Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014, Article ID 612976, 10 pages
http://dx.doi.org/10.1155/2014/612976
Research Article

Free-Form Rapid Prototyped Porous PDMS Scaffolds Incorporating Growth Factors Promote Chondrogenesis

1Product Development Laboratory, Mechanical Engineering & Manufacturing Department, Universidad Politécnica de Madrid (UPM), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
2Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain

Received 7 October 2013; Accepted 29 November 2013; Published 2 January 2014

Academic Editor: Alexander Tsouknidas

Copyright © 2014 Andrés Díaz Lantada et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this study, we present a promising approach for the rapid development of porous polydimethylsiloxane (PDMS) scaffold prototypes, with outer geometry defined from the design stage, according to the form of conventional implants or adapted to patients’ biostructures. The manufacture method is based on phase separation processes using materials obtained by casting within additive rapid prototyped molds. We include a comparative study of PDMS sponges obtained by different simple processes. Final in vitro assessment is carried out using hMSCs (bone marrow-derived human mesenchymal stem cells), cultured onto porous PDMS scaffolds functionalized with aminopropyltriethoxysilane (APTS) and equilibrated with a trophic factors medium produced by the cells. Results show that porous PDMS scaffold prototypes are excellent 3D platforms for hMSCs adhesion. Furthermore, this PDMS-3D niche, seeded with hMSCs and chondrogenic incubation medium during three weeks, showed a successful chondrogenesis determined by collagen type II expression. Thus, results show a versatile method to produce a 3D niche to address questions about cartilage and endochondral bone formation or skeleton tissues clinical approaches.