Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014 (2014), Article ID 614821, 11 pages
http://dx.doi.org/10.1155/2014/614821
Research Article

Effects of Rolling Reduction and Strength of Composed Layers on Bond Strength of Pure Copper and Aluminium Alloy Clad Sheets Fabricated by Cold Roll Bonding

Department of Materials Science and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 4250-J2-63 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan

Received 18 January 2014; Accepted 12 March 2014; Published 17 April 2014

Academic Editor: Roohollah Jamaati

Copyright © 2014 Yoji Miyajima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Xie, T. Yamaguchi, and K. Nishio, “Formation of intermetallic phases on the bond interface of aluminum-clad copper,” Journal of the Japan Institute of Metals, vol. 75, no. 3, pp. 166–172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Li, K. Nagai, and F. X. Yin, “Progress in cold roll bonding of metals,” Science and Technology of Advanced Materials, vol. 9, no. 2, Article ID 023001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. D. Manesh, “Assessment of surface bonding strength in Al clad steel strip using electrical resistivity and peeling tests,” Materials Science and Technology, vol. 22, no. 6, pp. 634–640, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Pozuelo, F. Carreno, and O. A. Ruano, “Delamination effect on the impact toughness of an ultrahigh carbon-mild steel laminate composite,” Composites Science and Technology, vol. 66, no. 15, pp. 2671–2676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Jamaati and M. R. Toroghinejad, “High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes,” Materials & Design, vol. 31, no. 10, pp. 4816–4822, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Jamaati and M. R. Toroghinejad, “The role of surface preparation parameters on cold roll bonding of aluminum strips,” Journal of Materials Engineering and Performance, vol. 20, no. 2, pp. 191–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. R. Le, M. P. F. Sutcliffe, P. Z. Wang, and G. T. Burstein, “Surface oxide fracture in cold aluminium rolling,” Acta Materialia, vol. 52, no. 4, pp. 911–920, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process,” Acta Materialia, vol. 47, no. 2, pp. 579–583, 1999. View at Google Scholar · View at Scopus
  9. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, “Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process,” Scripta Materialia, vol. 39, no. 9, pp. 1221–1227, 1998. View at Google Scholar · View at Scopus
  10. A. H. Clausen, T. Borvik, O. S. Hopperstad, and A. Benallal, “Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality,” Materials Science and Engineering A, vol. 364, no. 1-2, pp. 260–272, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. I. W. Chen, E. J. Winn, and M. Menon, “Application of deformation instability to microstructural control in multilayer ceramic composites,” Materials Science and Engineering A, vol. 317, no. 1-2, pp. 226–235, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. S. L. Semiatin and H. R. Piehler, “Deformation of sandwich sheet materials in uniaxial tension,” Metallurgical Transactions A, vol. 10, no. 1, pp. 85–96, 1979. View at Publisher · View at Google Scholar · View at Scopus
  13. S. L. Semiatin and H. R. Piehler, “Formability of sandwich sheet materials in plane strain compression and rolling,” Metallurgical Transactions A, vol. 10, no. 1, pp. 97–107, 1979. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Kato, S. Onaka, and S. Kumai, Zairyokyodogaku, Asakura, Tokyo, Japan, 1999.