Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014, Article ID 617241, 8 pages
http://dx.doi.org/10.1155/2014/617241
Research Article

Nanocrystalline Al Composites from Powder Milled under Ammonia Gas Flow

1Metallurgy and Materials Engineering Group, Escuela Técnica Superior de Ingeniería, University of Seville, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain
2Department of Chemistry and Materials Science, Escuela Técnica Superior de Ingeniería, University of Huelva, Campus La Rábida, Carretera Palos s/n, Palos de la Frontera, 21819 Huelva, Spain

Received 22 October 2013; Revised 14 January 2014; Accepted 15 January 2014; Published 27 February 2014

Academic Editor: Denis Chaumont

Copyright © 2014 J. Cintas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Joachim, “To be nano or not to be nano?” Nature Materials, vol. 4, pp. 107–109, 2005. View at Publisher · View at Google Scholar
  2. T. G. Langdon, “The impact of bulk nanostructured materials in modern research,” Reviews on advanced materials science, vol. 25, no. 1, pp. 11–15, 2010. View at Google Scholar
  3. R. Z. Valiev, M. J. Zehetbauer, Y. Estrin et al., “The innovation potential of bulk nanostructured materials,” Advanced Engineering Materials, vol. 9, no. 7, pp. 527–533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Gleiter, “Nanocrystalline materials,” Progress in Materials Science, vol. 33, no. 4, pp. 223–315, 1989. View at Publisher · View at Google Scholar
  5. R. Valiev, “Nanostructuring of metals by severe plastic deformation for advanced properties,” Nature Materials, vol. 3, pp. 511–516, 2004. View at Publisher · View at Google Scholar
  6. W. H. Hunt Jr., “Nanomaterials: nomenclature, novelty, and necessity,” JOM, vol. 56, no. 10, pp. 13–18, 2004. View at Google Scholar · View at Scopus
  7. H. Gleiter, “Nanostructured materials: state of the art and perspectives,” Nanostructured Materials, vol. 6, no. 1–4, pp. 3–14, 1995. View at Publisher · View at Google Scholar
  8. A. P. Newbery, B. Ahn, T. D. Topping, P. S. Pao, S. R. Nutt, and E. J. Lavernia, “Large UFG Al alloy plates from cryomilling,” Journal of Materials Processing Technology, vol. 203, no. 1–3, pp. 37–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. S. Khan, B. Farrokh, and L. Takacs, “Effect of grain refinement on mechanical properties of ball-milled bulk aluminum,” Materials Science and Engineering A, vol. 489, no. 1-2, pp. 77–84, 2008. View at Publisher · View at Google Scholar
  10. C. C. Koch, “Structural nanocrystalline materials: an overview,” Journal of Materials Science, vol. 42, no. 5, pp. 1403–1414, 2007. View at Publisher · View at Google Scholar
  11. C. Suryanarayana, “The structure and properties of nanocrystalline materials: issues and concerns,” JOM, vol. 54, no. 9, pp. 24–27, 2002. View at Google Scholar · View at Scopus
  12. D. L. Zhang, “Processing of advanced materials using high-energy mechanical milling,” Progress in Materials Science, vol. 49, no. 3-4, pp. 537–560, 2004. View at Publisher · View at Google Scholar
  13. Z. R. Hesabi, S. Kamrani, A. Simchi, and S. M. S. Reihani, “Effect of nanoscaled reinforcement particles on the structural evolution of aluminium powder during mechanical milling,” Powder Metallurgy, vol. 52, no. 2, pp. 151–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Ye, B. Q. Han, Z. Lee, B. Ahn, S. R. Nutt, and J. M. Schoenung, “A tri-modal aluminum based composite with super-high strength,” Scripta Materialia, vol. 53, no. 5, pp. 481–486, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Mohseni, S. Keirs, S. L. I. Chan, and M. Ferry, “High temperature stability of fine grained 7075Al alloy containing nanosized SiC particles,” Materials Science and Technology, vol. 26, no. 5, pp. 597–603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Z. Chen and K. Tokaji, “Effects of particle size on fatigue crack initiation and small crack growth in SiC particulate-reinforced aluminium alloy composites,” Materials Letters, vol. 58, no. 17-18, pp. 2314–2321, 2004. View at Publisher · View at Google Scholar
  17. C. F. Chen, P. W. Kao, L. Chang, and N. J. Ho, “Mechanical properties of nanometric Al2O3 particulate-reinforced Al-Al11Ce3 composites produced by friction stir processing,” Materials Transactions, vol. 51, pp. 933–938, 2010. View at Publisher · View at Google Scholar
  18. B. Prabhu, C. Suryanarayana, L. An, and R. Vaidyanathan, “Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling,” Materials Science and Engineering A, vol. 425, no. 1-2, pp. 192–200, 2006. View at Publisher · View at Google Scholar
  19. J. Cintas, F. G. Cuevas, J. M. Montes, and E. J. Herrera, “High-strength PM aluminium by milling in ammonia gas and sintering,” Scripta Materialia, vol. 53, no. 10, pp. 1165–1170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Cintas, F. G. Cuevas, J. M. Montes, and E. J. Herrera, “Microstructural control of sintered mechanically alloyed Al-1%Ni material,” Scripta Materialia, vol. 52, no. 5, pp. 341–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. F. G. Cuevas, J. Cintas, J. M. Montes, and J. M. Gallardo, “Al-Ti powder produced through mechanical alloying for different times,” Journal of Materials Science, vol. 41, no. 24, pp. 8339–8346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Cintas, F. G. Cuevas, J. M. Montes, E. S. Caballero, and E. J. Herrera, “Strengthening of ultrafine PM aluminium using nano-sized oxycarbonitride dispersoids,” Materials Science and Engineering A, vol. 528, no. 28, pp. 8286–8291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Cintas, J. M. Montes, F. G. Cuevas, and E. J. Herrera, “Heat-resistant bulk nanostructured P/M aluminium,” Journal of Alloys and Compounds, vol. 458, no. 1-2, pp. 282–285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Cintas, J. A. Rodríguez, J. M. Gallardo, and E. J. Herrera, “The impact of bulk nanostructured materials in modern research,” Revista de Metalurgia, vol. 37, no. 2, pp. 370–375, 2001. View at Publisher · View at Google Scholar
  25. P. G. Zhang, K. Y. Wang, and S. M. Guo, “Large-scale synthesis of AlN nanofibers by direct nitridation of aluminum,” Ceramics International, vol. 36, no. 7, pp. 2209–2213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Liu, B. Wu, and M. Gu, “An investigation of micro-galvanic corrosion in Al/AlNp composites,” Materials Chemistry and Physics, vol. 102, no. 1, pp. 43–46, 2007. View at Publisher · View at Google Scholar
  27. H. Yu, H. Chen, R. Ma, and G. Min, “Fabrication of AlN-TiC/Al composites by gas injection processing,” Rare Metals, vol. 25, no. 6, pp. 659–664, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. W. Lai and D. D. L. Chung, “Fabrication of particulate aluminium-matrix composites by liquid metal infiltration,” Journal of Materials Science, vol. 29, no. 12, pp. 3128–3150, 1994. View at Publisher · View at Google Scholar
  29. A. Inoue, K. Nosaki, B. G. Kim, T. Yamaguchi, and T. Masumoto, “Mechanical strength of ultra-fine Al-AlN composites produced by a combined method of plasma-alloy reaction, spray deposition and hot pressing,” Journal of Materials Science, vol. 28, no. 16, pp. 4398–4404, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. D. F. Lii, J. L. Huang, and S. T. Chang, “The mechanical properties of AlN/Al composites manufactured by squeeze casting,” Journal of the European Ceramic Society, vol. 22, no. 2, pp. 253–261, 2002. View at Publisher · View at Google Scholar
  31. H. Abdoli, E. Salahi, H. Farnoush, and K. Pourazrang, “Evolutions during synthesis of Al-AlN-nanostructured composite powder by mechanical alloying,” Journal of Alloys and Compounds, vol. 461, no. 1-2, pp. 166–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Cintas, J. M. Montes, F. G. Cuevas, and J. M. Gallardo, “Influence of PCA content on mechanical properties of sintered MA aluminium,” Materials Science Forum, vol. 514-516, no. 2, pp. 1279–1283, 2006. View at Google Scholar · View at Scopus
  33. R. A. Young, Ed., The Rietveld Method, Oxford University Press, New York, NY, USA, 2000.
  34. G. K. Williamson and W. H. Hall, “An abnormal after-effect in metals,” Acta Metallurgica, vol. 1, no. 1, pp. 2–31, 1953. View at Publisher · View at Google Scholar
  35. J. I. Langford, “A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function,” Journal of Applied Crystallography, vol. 11, pp. 10–14, 1978. View at Publisher · View at Google Scholar
  36. Y. Q. Liu, H. T. Cong, W. Wang, C. H. Sun, and H. M. Cheng, “AlN nanoparticle-reinforced nanocrystalline Al matrix composites: fabrication and mechanical properties,” Materials Science and Engineering A, vol. 505, pp. 151–156, 2009. View at Publisher · View at Google Scholar
  37. Y. Li, Y. H. Zhao, V. Ortalan et al., “Investigation of aluminum-based nanocomposites with ultra-high strength,” Materials Science and Engineering A, vol. 527, no. 1-2, pp. 305–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. K. B. Lee, H. S. Sim, and H. Kwon, “Fabrication of Al/AlN composites by in situ reaction,” Journal of Materials Science, vol. 41, no. 19, pp. 6347–6352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Shengli, L. Yawei, L. Jing et al., “Microstructure and phase composition of AlN/Al composite fabricated by directed melt nitridation,” Key Engineering Materials, vol. 368-372, no. 2, pp. 977–979, 2008. View at Google Scholar · View at Scopus