Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014 (2014), Article ID 684207, 7 pages
http://dx.doi.org/10.1155/2014/684207
Research Article

Fatigue Performance and Multiscale Mechanisms of Concrete Toughened by Polymers and Waste Rubber

Bo Chen,1,2 Liping Guo,1,3 and Wei Sun1,3

1School of Materials Science and Engineering, Southeast University, Dongnan Daxue Road No. 2, Nanjing 211189, China
2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
3Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, China

Received 22 April 2013; Revised 8 December 2013; Accepted 15 December 2013; Published 2 January 2014

Academic Editor: Jun Zhang

Copyright © 2014 Bo Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Dry, “Smart earthquake-resistant materials: using time-released adhesives for damping, stiffening, and deflection control,” in Proceedings of the 3rd International Conference on Intelligent Materials and 3rd European Conference on Smart Structures and Materials, vol. 2779 of Proceeding of SPIE, pp. 958–967, 1996.
  2. G. Ye, Experimental study and numerical simulation of the development of the microstructure and permeability of cementitious materials [Ph.D. thesis], Delft University of Technology, Delft, The Netherlands, 2003.
  3. E. Guneyisi, M. Gesolu, and T. Özturan, “Properties of rubberized concretes containing silica fume,” Cement and Concrete Research, no. 34, pp. 2309–2317, 2004. View at Google Scholar
  4. G. Cheng, G. Q. Zhao, Y. J. Guan, and Q. H. Yuan, “Experimental study on mechanical properities of tyre rubber materials,” China Elastomerics, vol. 13, no. 4, pp. 6–9, 2003. View at Google Scholar
  5. M. Nehdi and A. Khan, “Cementitious composites containing recycled tire rubber: an overview of engineering properties and potential applications,” Cement, Concrete and Aggregates, vol. 23, no. 1, pp. 3–10, 2001. View at Google Scholar
  6. H. A. Toutanji, “The use of rubber tire particles in concrete to replace mineral aggregates,” Cement and Concrete Composites, vol. 18, no. 2, pp. 135–139, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. L. B. Topcu, “The properties of rubberized concretes,” Cement and Concrete Research, vol. 25, no. 2, pp. 304–310, 1995. View at Google Scholar · View at Scopus
  8. N. I. Fattuhi and L. A. Clark, “Cement-based materials containing shredded scrap truck tyre rubber,” Construction and Building Materials, vol. 10, no. 4, pp. 229–236, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. L.-P. Guo, W. Sun, K.-R. Zheng, H.-J. Chen, and B. Liu, “Study on the flexural fatigue performance and fractal mechanism of concrete with high proportions of ground granulated blast-furnace slag,” Cement and Concrete Research, vol. 37, no. 2, pp. 242–250, 2007. View at Publisher · View at Google Scholar · View at Scopus