Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014 (2014), Article ID 685829, 8 pages
http://dx.doi.org/10.1155/2014/685829
Research Article

Functionalization of Natural Cork Composite with Microcapsules after Plasma Treatment

1Department of Textile Engineering, Federal University of Rio Grande do Norte, Center of Technology, 59078-970 Natal, RN, Brazil
2Department of Textile Engineering, University of Minho, Azurem Campus, 4800-058 Guimarães, Portugal

Received 28 February 2014; Accepted 7 April 2014; Published 13 May 2014

Academic Editor: Vladimir Tsukruk

Copyright © 2014 Fernando Ribeiro Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Jové, M. À. Olivella, and L. Cano, “Study of the variability in chemical composition of bark layers of Quercus Suber L. from different production areas,” Bioresources, vol. 6, no. 2, pp. 1806–1815, 2011. View at Google Scholar
  2. H. Pereira and A. Costa, Evolução Recente Da Indústria De Cortiça. Centro De Estudos Florestais, Instituto Superior De Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal, 2002.
  3. F. M. A. Fonseca, “Crescimento e qualidade da cortiça potencialidades da microdesintometria,” in Congresso Florestal Nacional, Universidade De Trás-os Montes E Alto Douro, 15 A 17DEz, pp. 267–271, Anais do III Congresso Florestal Nacional, 1994. View at Google Scholar
  4. A. Schmidt, Cortiça E Artigos dE Cortiça, Banco de Fomento Nacional, Lisboa, Portugal, 1983.
  5. G. Nelson, “Application of microencapsulation in textiles,” International Journal of Pharmaceutics, vol. 242, no. 1-2, pp. 55–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. F. R. Oliveira, M. Fernandes, N. Carneiro, and A. P. Souto, “Functionalization of wool fabric with phase-change materials microcapsules,” Journal of Applied Polymer Science, vol. 128, pp. 2638–2647, 2013. View at Publisher · View at Google Scholar
  7. V. A. Zeithaml, R. T. Rust, and K. N. Lemon, “The customer pyramid: creating and serving profitable customers,” California Management Review, no. 4, pp. 118–142, 2001. View at Google Scholar · View at Scopus
  8. F. R. Oliveira, L. Erkens, R. Fangueiro, and A. P. Souto, “Surface modification of banana fibers by DBD plasma treatment,” Plasma Chemistry and Plasma Processing, vol. 32, no. 2, pp. 259–273, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Seki, M. Sarikanat, K. Sever, S. Erden, and H. A. Gulec, “Effect of the low and radio frequency oxygen plasma treatment of jute fiber on mechanical properties of jute fiber/polyester composite,” Fibers and Polymers, vol. 11, no. 8, pp. 1159–1164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Carneiro, A. P. Souto, E. Silva et al., “Dyeability of corona-treated fabrics,” Coloration Technology, vol. 117, no. 5, pp. 298–302, 2001. View at Google Scholar · View at Scopus
  11. N. Carneiro, A. P. Souto, F. Forster, and E. Prinz, 2004, Continuous and semicontinuous treatment of textile materials integrating corona discharge. Patent in internationalization phase patent number PCT/PT2004/000008.
  12. C. Baley, F. Busnel, Y. Grohens, and O. Sire, “Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin,” Composites A: Applied Science and Manufacturing, vol. 37, no. 10, pp. 1626–1637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Papakonstantinou, E. Amanatides, D. Mataras, V. Ioannidis, and P. Nikolopoulos, “Improved surface energy analysis for plasma treated PET films,” Plasma Processes and Polymers, vol. 4, no. 1, pp. S1057–S1062, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. Kim, R. H. Friend, and F. Cacialli, “Improved operational stability of polyfluorene-based organic light-emitting diodes with plasma-treated indium-tin-oxide anodes,” Applied Physics Letters, vol. 74, no. 21, pp. 3084–3086, 1999. View at Google Scholar · View at Scopus
  15. M. Keller, A. Ritter, P. Reimann, V. Thommen, A. Fischer, and D. Hegemann, “Comparative study of plasma-induced and wet-chemical cleaning of synthetic fibers,” Surface and Coatings Technology, vol. 200, no. 1–4, pp. 1045–1050, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Molina, F. R. Oliveira, A. P. Souto, M. F. Esteves, J. Bonastre, and F. Cases, “Enhanced adhesion of polypyrrole/PWO4O3−hybrid coatings on polyester fabrics,” Journal of Applied Polymer Science, vol. 129, pp. 422–433, 2012. View at Google Scholar
  17. F. R. Oliveira, A. P. Souto, N. Carneiro, and J. H. O. Nascimento, “Surface modification on polyamide 6.6 with Double Barrier Discharge (DBD) plasma to optimise dyeing process by direct dyes,” Materials Science Forum, vol. 636-637, pp. 846–852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Y. Cheng, C. W. M. Yuen, C. W. Kan et al., “Influence of atmospheric pressure plasma treatment on various fibrous materials: performance properties and surface adhesion analysis,” Vacuum, vol. 84, no. 12, pp. 1466–1470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Bozaci, K. Sever, A. Demir, Y. Seki, M. Sarikanat, and E. Ozdogan, “Effect of the atmospheric plasma treatment parameters on surface and mechanical properties of jute fabric,” Fibers and Polymers, vol. 10, no. 6, pp. 781–786, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. R. Carmo, [Ph.D. dissertation], University of Aveiro, Portugal, 1997.
  21. M. H. Lopes, N. C. Pascoal, A. S. Barros, D. Rutledge, I. Delgadillo, and A. M. Gil, “Quantitation of aliphatic suberin in quercus suber L. cork by FTIR spectroscopy and solid-state (13)C-NMR Spectroscopy,” Biopolymers, vol. 57, no. 6, pp. 344–351, 2000. View at Google Scholar
  22. A. Demir, H. A. Karahan, E. Özdoǧan, T. Öktem, and N. Seventekin, “The synergetic effects of alternative methods in wool finishing,” Fibres and Textiles in Eastern Europe, vol. 16, no. 2, pp. 89–94, 2008. View at Google Scholar · View at Scopus
  23. N. Dumitrascu, I. Topala, and G. Popa, “Dielectric barrier discharge technique in improving the wettability and adhesion properties of polymer surfaces,” IEEE Transactions on Plasma Science, vol. 33, no. 5, pp. 1710–1714, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. D. J. Merline, S. Vukusic, and A. A. Abdala, “Melamine formaldehyde: curing studies and reaction mechanism,” Polymer Journal, vol. 45, pp. 413–419, 2013. View at Publisher · View at Google Scholar