Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014, Article ID 717452, 7 pages
http://dx.doi.org/10.1155/2014/717452
Research Article

Compression Deformation Behavior of AZ81 Magnesium Alloy at Elevated Temperatures

School of Materials Science and Engineering, Shanxi Magnesium and Magnesium Alloy Engineering Technology Research Center, Taiyuan University of Science and Technology, Taiyuan 030024, China

Received 23 January 2014; Accepted 9 May 2014; Published 29 May 2014

Academic Editor: Gang Liu

Copyright © 2014 Xiaoping Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z.-H. Chen, W.-J. Xia, and H.-G. Yan, “Wrought magnesium alloy,” in ECT, vol. 5, pp. 3–6, Chemical Industry Press, Beijing, China, 2005, (Chinese). View at Google Scholar
  2. Z.-S. Ji, “Research process and new technology of magnesium alloy in Japan,” Chinese Journal of Nonferrous Metals, vol. 14, no. 12, pp. 1977–1984, 2004. View at Google Scholar · View at Scopus
  3. Q. Guo, H.-G. Yan, Z.-H. Chen, and H. Zhang, “Study on the flow stress of hot compressions of Mg-AI-Zn alloy,” Journal of Hunan University Natural Sciences, vol. 33, no. 3, pp. 75–79, 2006 (Chinese). View at Google Scholar · View at Scopus
  4. Z.-H. DU, X.-H. Zhang, X.-Y. Fang, X.-J. Zhang, Y.-L. Chen, and Y.-W. Zhang, “Hot compression deformation behavior of MB26 magnesium alloy,” Journal of Tram Nonferrous MetSoe China, vol. l7, no. 2, pp. 400–404, 2007. View at Google Scholar
  5. T. Mukai, “Grain refinement of commercial magnesium alloys for high-strain-rate-superplastic forming,” Journal of Material Science Forum, vol. 350-351, pp. 159–170, 2000. View at Google Scholar
  6. Y. Li, Y. Chen, H. Cui, J. Ding, L. Zuo, and J. Zhang, “Hot deformation behavior of a spray-deposited AZ31 magnesium alloy,” Rare Metals, vol. 28, no. 1, pp. 91–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Dai, D. Zhang, and X. Chen, “On the anisotropic deformation of AZ31 Mg alloy under compression,” Materials and Design, vol. 32, no. 10, pp. 5004–5009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Juan Hu, Y. H. Peng, D. Yong Li, and S. Rui Zhang, “Influence of dynamic recrystallization on tensile properties of AZ31B magnesium alloy sheet,” Materials and Manufacturing Processes, vol. 25, no. 8, pp. 880–887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. X.-H. Zhang, J.-F. Jiang, and S.-J. Luo, “Compression deformation behavior of AZ91D magnesium alloy at elevated temperature,” Chinese Journal of Nonferrous Metals, vol. 19, no. 10, pp. 1720–1725, 2009 (Chinese). View at Google Scholar · View at Scopus
  10. S.-B. Li, Y.-Q. Wang, M.-Y. Zheng, and K. Wu, “Dynamic recrystallization of AZ91 magnesium alloy during compression deformation at elevated temperature,” Transactions of Nonferrous Metals Society of China, vol. 14, no. 2, pp. 306–310, 2004. View at Google Scholar · View at Scopus
  11. Z. Wang, X. Liu, and J. Xie, “Constitutive relationship of hot deformation of AZ91 magnesium alloy,” Acta Metallurgica Sinica, vol. 44, no. 11, pp. 1378–1383, 2008 (Chinese). View at Google Scholar · View at Scopus
  12. A. G. Beer and M. R. Barnett, “Microstructural development during hot working of Mg-3Al-1Zn,” Metallurgical and Materials Transactions A, vol. 38, pp. 1856–1867, 2007. View at Google Scholar
  13. S. Wang, L. Song, S. Kang, J. Cho, and Y. Wang, “Deformation behavior and microstructure evolution of wrought magnesium alloys,” Chinese Journal of Mechanical Engineering, vol. 26, no. 3, pp. 437–447, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Takuda, H. Fujimoto, and N. Hatta, “Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures,” Journal of Materials Processing Technology, vol. 80-81, pp. 513–516, 1998. View at Google Scholar · View at Scopus
  15. A. Galiyev, R. Kaibyshev, and G. Gottstein, “Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60,” Acta Materialia, vol. 49, no. 7, pp. 1199–1207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. M. R. Barnett, “Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31,” Journal of Light Metals, vol. 1, no. 3, pp. 167–177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Wang, M. Wang, R. Ma, Y. Wang, and Y. Wang, “Microstructure and hot compression behavior of twin-roll-casting AZ41M magnesium alloy,” Rare Metals, vol. 29, no. 4, pp. 396–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Xue, Z.-M. Zhang, L.-H. Lang, and H.-J. Li, “High temperature compression deformation behaviors of AZ91D alloy,” Journal of Forging & Stamping Technology, vol. 34, no. 1, pp. 135–138, 2009. View at Google Scholar