Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014 (2014), Article ID 724248, 20 pages
http://dx.doi.org/10.1155/2014/724248
Review Article

Zeolite Y: Synthesis, Modification, and Properties—A Case Revisited

Brandenburgische Technische Universität Cottbus, Volmerstraße 13, 12489 Berlin, Germany

Received 9 October 2013; Revised 21 January 2014; Accepted 23 January 2014; Published 22 May 2014

Academic Editor: Louis-Philippe Lefebvre

Copyright © 2014 Wolfgang Lutz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. W. Breck, “Crystalline zeolite Y,” U.S. Patent 3130007, 1964.
  2. R. M. Milton, “Molecular sieve adsorbents,” U.S. Patent 2882243, 1959.
  3. R. M. Milton, “Molecular sieve adsorbents,” U.S. Patent 2882244, 1959.
  4. D. W. Breck, Zeolite Molecular Sieves, John Wiley & Sons, New York, NY, USA, 1974.
  5. E. M. Flanigan, “Molecular sieve zeolite technology: the first twenty-five year,” in Proceedings of the 5th International Conference on Zeolites, pp. 760–780, Naples, Italy, June 1980.
  6. C. H. Rüscher, N. Salman, J.-C. Buhl, and W. Lutz, “Relation between growth-size and chemical composition of X and Y type zeolites,” Microporous and Mesoporous Materials, vol. 92, no. 1–3, pp. 309–311, 2006. View at Publisher · View at Google Scholar
  7. C. W. McDaniel and P. K. Maher, in Molecular Sieves, p. 186, Society of Chemical Industry, London, UK, 1968.
  8. P. B. Venuto and E. T. Habib Jr., “Catalyst-feedstock-engineering interactions in fluid catalytic cracking,” Catalysis Reviews: Science and Engineering, vol. 18, no. 1, pp. 1–150, 1978. View at Google Scholar · View at Scopus
  9. D. J. Rawlence and K. Gosling, “FCC catalyst performance evaluation,” Applied Catalysis, vol. 43, no. 2, pp. 213–237, 1988. View at Google Scholar · View at Scopus
  10. R. M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, UK, 1978.
  11. S. P. Zhdanov, S. S. Khvoshchev, and N. N. Feoktistova, Synthetic Zeolites, vol. 1, Gordon & Breach Science Publishers, New York, NY, USA, 1990.
  12. G. T. Kerr, “Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites,” The Journal of Physical Chemistry, vol. 72, no. 7, pp. 2594–2596, 1968. View at Publisher · View at Google Scholar
  13. H. K. Beyer, I. M. Belenykaja, F. Hange, M. Tielen, P. J. Grobet, and P. A. Jacobs, “Preparation of high-silica faujasites by treatment with silicon tetrachloride,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 81, no. 11, pp. 2889–2901, 1985. View at Publisher · View at Google Scholar · View at Scopus
  14. J. W. Ward, “Thermal decomposition of ammonium Y zeolite,” Journal of Catalysis, vol. 27, pp. 157–161, 1972. View at Publisher · View at Google Scholar
  15. P. K. Maher, F. D. Hunter, and J. Scherzer, “Crystal structures of ultrastable faujasites,” in Advances in Chemistry, vol. 101, chapter 21, pp. 266–278, 1971. View at Publisher · View at Google Scholar
  16. W. J. Ambs and W. H. Flank, “Thermal behavior of synthetic faujasite,” Journal of Catalysis, vol. 14, no. 2, pp. 118–125, 1969. View at Google Scholar · View at Scopus
  17. J. B. Peri, “The nature of ultrastable faujasite,” in Proceedings of the 5th International Congress on Catalysis, J. W. Hightower, Ed., pp. 329–338, North-Holland, Miami Beach, Fla, USA, 1972.
  18. G. T. Kerr, A. W. Chester, and D. H. Olson, “Preparation of ultrahigh silicon faujasite by controlled-rate aluminium removal,” in Proceedings of the Symposium on Zeolites, Jozsef Attila University, 1978, published in Acta Physica et Chemica, Nova Series, vol. 24, pp. 169–174, 1978.
  19. A. Corma and V. Fomés, “Delaminated zeolites as active catalysts for processing large molecules,” in Zeolites and Mesoporous Materials at the Dawn of the 21st Century: Proceedings of the 13th International Zeolite Conference, Montpellier, France, 8–13 July 2001, A. Galarneau, F. di Renzo, F. Fajula, and J. Vedrine, Eds., vol. 135 of Studies in Surface Science and Catalysis, pp. 73–82, Elsevier, Amsterdam, The Netherlands, 2001. View at Publisher · View at Google Scholar
  20. G. T. Kerr, “Chemistry of crystalline aluminosilicates. I. Factors affecting the formation of zeolite A,” The Journal of Physical Chemistry, vol. 70, pp. 1047–1050, 1966. View at Publisher · View at Google Scholar
  21. G. T. Kerr, “Chemistry of crystalline aluminosilicates. IV. Factors affecting the formation of zeolites X and B,” The Journal of Physical Chemistry, vol. 72, no. 4, pp. 1385–1386, 1968. View at Publisher · View at Google Scholar
  22. D. W. Breck and E. M. Flanigan, “Synthesis and properties of union carbide zeolites L, X and Y,” in Molecular Sieves, pp. 47–60, Society of Chemical Industry, London, UK, 1968. View at Google Scholar
  23. S. P. Zhdanov, “Some problems of zeolite crystallization,” in Molecular Sieve Zeolites-I, E. M. Flanigen and L. B. Sand, Eds., vol. 101 of Advances in Chemistry, chapter 2, pp. 20–43, 1971. View at Publisher · View at Google Scholar
  24. B. D. McNicol, G. T. Pott, and K. R. Loos, “Spectroscopic studies of zeolite synthesis,” Journal of Physical Chemistry, vol. 76, no. 23, pp. 3388–3390, 1972. View at Google Scholar · View at Scopus
  25. E. Thilo, W. Wieker, and H. Stade, “Chemische Untersuchungen von Silicaten, I. Über Beziehungen zwischen dem Polymerisationsgrad silicatischer Anionen und ihrem Reaktionsvermögen mit Molybdänsäure,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 340, no. 5-6, pp. 261–276, 1965. View at Publisher · View at Google Scholar
  26. B. Fahlke, W. Wieker, H. Fürtig, W. Roscher, and R. Seidel, “Untersuchungen zum Bildungsmechanismus von Molsieben,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 439, pp. 95–102, 1978. View at Publisher · View at Google Scholar
  27. W. Wieker and B. Fahlke, “On the reaction mechanism of the formation of molecular sieves and related compounds,” in Zeolites Synthesis, Structure, Technology and Application: Proceedings of an International Symposium, Organized by the “Boris Kidrič” Institute of Chemistry, Ljubljana, on Behalf of the International Zeolite Association, B. Držaj, S. Hocevar, and S. Pejovnik, Eds., vol. 24 of Studies in Surface Science and Catalysis, pp. 161–181, Elsevier, Amsterdam, The Netherlands, 1985. View at Publisher · View at Google Scholar
  28. J. A. Kostinko, “Intrazeolite chemistry,” in Factors Influencing the Synthesis of Zeolites A, X, and Y, G. D. Stucky and F. G. Dwyer, Eds., ACS Symposium Series 218, pp. 3–19, American Chemical Society, Washington, DC, USA, 1983. View at Publisher · View at Google Scholar
  29. C. Berger, R. Gläser, R. A. Rakoczy, and J. Weitkamp, “The synthesis of large crystals of zeolite Y re-visited,” Microporous and Mesoporous Materials, vol. 83, no. 1–3, pp. 333–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Salman, Crystal chemical studies on the growth size problem of Y zeolites [Ph.D. thesis], Institute for Mineralogy, University of Hannover, Hannover, Germany, 2006.
  31. W. Lutz, R. Kurzhals, G. Kryukova, D. Enke, M. Weber, and D. Heidemann, “Formation of mesopores in USY zeolites: a case revisited,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 636, no. 8, pp. 1497–1505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Ferchiche, M. Valcheva-Traykova, D. E. W. Vaughan, J. Warzywoda, and A. Sacco Jr., “Synthesis of large single crystals of templated Y faujasite,” Journal of Crystal Growth, vol. 222, no. 4, pp. 801–805, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Ferchiche, J. Warzywoda, and A. Sacco Jr., “Direct synthesis of zeolite Y with large particle size,” International Journal of Inorganic Materials, vol. 3, no. 7, pp. 773–780, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. Ch. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types, Elsevier, Amsterdam, The Netherlands, 2007.
  35. W. Loevenstein, “The distribution of aluminum in the tetrahedra of silicates and aluminates,” American Mineralogist, vol. 39, no. 1-2, pp. 92–96, 1954. View at Google Scholar
  36. R. M. Barrer and J. D. Falconer, “Ion exchange in felspathoids as a solid-state reaction,” Proceedings of the Royal Society A, vol. 236, pp. 227–249, 1956. View at Publisher · View at Google Scholar
  37. R. M. Barrer and W. M. Meier, “Structural and ion sieve properties of a synthetic crystalline exchanger,” Transactions of the Faraday Society, vol. 54, pp. 1074–1085, 1958. View at Google Scholar · View at Scopus
  38. W. Lutz, non-published results.
  39. Q. L. Wang, G. Giannetto, M. Torrealba, G. Perot, C. Kappenstein, and M. Guisnet, “Dealumination of zeolites II. Kinetic study of the dealumination by hydrothermal treatment of a NH4NaY zeolite,” Journal of Catalysis, vol. 130, no. 2, pp. 459–470, 1991. View at Google Scholar · View at Scopus
  40. R. M. Barrer and M. V. Makki, “Molecular sieve sorbents from clinoptilolite,” Canadian Journal of Chemistry, vol. 42, no. 6, pp. 1481–1487, 1964. View at Publisher · View at Google Scholar
  41. U. Lohse, E. Löffler, M. Hunger, J. Stöckner, and V. Patzelová, “Hydroxyl groups of the non-framework aluminium species in dealuminated Y zeolites,” Zeolites, vol. 7, no. 1, pp. 11–13, 1987. View at Publisher · View at Google Scholar
  42. P. Fejes, I. Kiricsi, I. Hannus, A. Kiss, and G. Schöbel, “A novel method for the dealumination of zeolites,” Reaction Kinetics and Catalysis Letters, vol. 14, no. 4, pp. 481–488, 1980. View at Publisher · View at Google Scholar · View at Scopus
  43. B. M. Lok and T. P. J. Izod, “Modification of molecular sieves—direct fluorination,” Zeolites, vol. 2, no. 2, pp. 66–67, 1982. View at Google Scholar · View at Scopus
  44. G. Engelhardt, U. Lohse, A. Samoson, M. Mägi, M. Tarmak, and E. Lippmaa, “High resolution 29Si n.m.r. of dealuminated and ultrastable Y-zeolites,” Zeolites, vol. 2, no. 1, pp. 59–62, 1982. View at Google Scholar · View at Scopus
  45. U. Lohse, I. Pitsch, E. Schreier, B. Parlitz, and K.-H. Schnabel, “Cubic and hexagonal faujasites with varying Si/Al ratios I. Synthesis and characterization,” Applied Catalysis A: General, vol. 129, no. 2, pp. 189–202, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Salman, C. H. Rüscher, J.-C. Buhl, W. Lutz, H. Toufar, and M. Stöcker, “Effect of temperature and time in the hydrothermal treatment of HY zeolite,” Microporous and Mesoporous Materials, vol. 90, no. 1–3, pp. 339–346, 2006. View at Publisher · View at Google Scholar
  47. U. Lohse, E. Alsdorf, and H. Stach, “Dealuminierte Molekularsiebe vom Typ Y. Herstellung und Charakterisierung durch IR-Spektren, DTA/DTG-Messungen und Adsorptionsdaten,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 447, no. 1, pp. 64–74, 1978. View at Publisher · View at Google Scholar
  48. K. P. Schröder and J. Sauer, “Preferred stability of aluminum-oxygen-silicon-oxygen-aluminum linkages in high-silica zeolite catalysts: theoretical predictions contrary to Dempsey's rule,” The Journal of Physical Chemistry, vol. 97, no. 25, pp. 6579–6581, 1993. View at Publisher · View at Google Scholar
  49. E. M. Flanigan, H. Khatami, and H. A. Szymanski, “Infrared structural studies of zeolite frameworks,” in Molecular Sieve Zeolites-I, E. M. Flanigen and L. B. Sand, Eds., vol. 101 of Advances in Chemistry, chapter 16, pp. 201–229, 1971. View at Publisher · View at Google Scholar
  50. W. Lutz, C. H. Rüscher, and D. Heidemann, “Determination of the framework and non-framework [SiO2] and [AlO2] species of steamed and leached faujasite type zeolites: calibration of IR, NMR, and XRD data by chemical methods,” Microporous and Mesoporous Materials, vol. 55, no. 2, pp. 193–202, 2002. View at Publisher · View at Google Scholar
  51. R. Bertram, U. Lohse, and W. Gessner, “Zur Charakterisierung des Extragitter-Aluminiums in Y-zeolithen mittels der Ferronmethode,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 567, no. 1, pp. 145–152, 1988. View at Publisher · View at Google Scholar
  52. H. Fichtner-Schmittler, U. Lohse, H. Mießner, and H. E. Maneck, “Correlation between unit-cell parameter, skeletal stretching vibrations and molar fraction of aluminium of faujasite type zeolites for Si/Al = 1.1–1000,” Zeitschrift für Physikalische Chemie, vol. 271, pp. 69–79, 1990. View at Google Scholar
  53. C. H. Rüscher, J.-C. Buhl, and W. Lutz, “13-P-15-determination of the Si/Al ratio of faujasite-type zeolites,” in Zeolites and Mesoporous Materials at the Dawn of the 21st Century: Proceedings of the 13th International Zeolite Conference, A. Galarneau, F. di Renzo, F. Fajula, and J. Vedrine, Eds., vol. 135 of Studies in Surface Science and Catalysis, p. 343, Elsevier, Amsterdam, The Netherlands, 2001. View at Publisher · View at Google Scholar
  54. G. Engelhardt and D. Michel, High Resolution Solid State NMR of Silicates and Zeolites, John Wiley & Sons, New York, NY, USA, 1987.
  55. W. Lutz, C. H. Rüscher, T. M. Gesing et al., “Investigations of the mechanism of dealumination of zeolite Y by steam: tuned mesopore formation versus the Si/Al ratio,” in Recent Advances in the Science and Technology of Zeolites and Related Materials Part B: Proceedings of the 14th International Zeolite Conference, E. van Steen, L. H. Callanan, and M. Claeys, Eds., vol. 154 of Studies in Surface Science and Catalysis, pp. 1411–1417, Elsevier, London, UK, 2004. View at Publisher · View at Google Scholar
  56. R. M. Barrer and D. L. Peterson, “Intracrystalline sorption by synthetic mordenites,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 280, no. 1383, pp. 466–485, 1964. View at Publisher · View at Google Scholar
  57. G. T. Kerr, “Intracrystalline rearrangement of constitutive water in hydrogen zeolite Y,” The Journal of Physical Chemistry, vol. 71, no. 12, pp. 4155–4156, 1967. View at Publisher · View at Google Scholar
  58. G. T. Kerr, “Chemistry of crystalline aluminosilicates: VII. Thermal decomposition products of ammonium zeolite Y,” Journal of Catalysis, vol. 15, no. 2, pp. 200–204, 1969. View at Publisher · View at Google Scholar
  59. B. A. Baran, I. M. Belenkaya, and M. M. Dubinin, “Formation and properties of the hydrogen form of mordenite,” Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, vol. 4, pp. 742–749, 1973 (Russian). View at Google Scholar
  60. D. W. Breck and G. W. Skeels, Molecular Sieves II, vol. 40 of ACS Symposium Series, American Chemical Society, Washington, DC, USA, 1977.
  61. D. W. Breck and G. W. Skeels, “The role of aluminium in the thermal treatment of ammonium exchanged zeolite Y,” in Proceedings of the 6th International Congress on Catalysis, G. C. Bond, P. B. Wells, and F. C. Tompkins, Eds., pp. 645–659, The Pitman Press, 1976.
  62. J. Dwyer, F. R. Fitch, G. Qin, and J. C. Vickerman, “Study of the surface composition of zeolites by fast atom bombardment mass spectrometry,” Journal of Physical Chemistry, vol. 86, no. 23, pp. 4574–4578, 1982. View at Google Scholar · View at Scopus
  63. T. Gross, U. Lohse, G. Engelhardt, K.-H. Richter, and V. Patzelová, “Surface composition of dealuminated Y zeolites studied by X-ray photoelectron spectroscopy,” Zeolites, vol. 4, no. 1, pp. 25–29, 1984. View at Google Scholar · View at Scopus
  64. D. Freude, H. Ernst, and I. Wolf, “Solid-state nuclear magnetic resonance studies of acid sites in zeolites,” Solid State Nuclear Magnetic Resonance, vol. 3, no. 5, pp. 271–286, 1994. View at Google Scholar · View at Scopus
  65. J. Jiao, J. Kanellopoulus, W. Wang et al., “Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0 = 9.4 to 17.6 T,” Physical Chemistry Chemical Physics, vol. 7, no. 17, pp. 3221–3226, 2005. View at Publisher · View at Google Scholar
  66. R. Bertram, W. Gessner, D. Müller, and M. Danner, “Characterization of Al(III) species in basic aluminium chloride flocculants by means of Ferron method and 27Al nuclear magnetic resonance,” Acta Hydrochimica et Hydrobiologica, vol. 22, no. 6, pp. 265–269, 1994. View at Publisher · View at Google Scholar
  67. J. Scherzer, “Dealuminated faujasite-type structures with Si2/Al2O3 ratios over 100,” Journal of Catalysis, vol. 54, no. 2, pp. 285–288, 1978. View at Publisher · View at Google Scholar
  68. N. P. Rhodes and R. Rudham, “Catalytic studies with dealuminated Y zeolite. Part 1.-Catalyst characterisation and the disproportionation of ethylbenzene,” Journal of the Chemical Society, Faraday Transactions, vol. 89, no. 14, pp. 2551–2557, 1993. View at Publisher · View at Google Scholar · View at Scopus
  69. D. Freude, T. Fröhlich, M. Hunger, and G. Scheler, “NMR studies concerning the dehydroxylation of zeolites HY,” Chemical Physics Letters, vol. 98, no. 3, pp. 263–266, 1983. View at Publisher · View at Google Scholar
  70. M. Stockenhuber and J. A. Lercher, “Characterization and removal of extra lattice species in faujasites,” Microporous Materials, vol. 3, no. 4-5, pp. 457–465, 1995. View at Google Scholar · View at Scopus
  71. J. Sanz, V. Fornes, and A. Corma, “Extraframework aluminium in steam- and SiCl4-dealuminated Y zeolite. A 27Al and 29Si nuclear magnetic resonance study,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 84, pp. 3113–3119, 1988. View at Publisher · View at Google Scholar
  72. W. E. E. Stone, G. M. S. El Shafei, J. Sanz, and S. A. Selim, “Association of soluble aluminum ionic species with a silica-gel surface. A solid-state NMR study,” Journal of Physical Chemistry, vol. 97, no. 39, pp. 10127–10132, 1993. View at Google Scholar · View at Scopus
  73. I. Gromann and Th. Gross, “Quantitative analysis of X-ray photoelectron spectroscopy intensities for dealuminated zeolites and supported catalysts where the promoter-forming elements also occur in the support,” Journal of Electron Spectroscopy and Related Phenomena, vol. 53, no. 3, pp. 99–106, 1990. View at Publisher · View at Google Scholar
  74. R. K. Iler, The Chemistry of Silica, John Wiley & Sons, New York, NY, USA, 1979.
  75. W. Lutz, E. Löffler, and B. Zibrowius, “Non-framework aluminium in highly dealuminated Y zeolites generated by steaming or substitution,” in Progress in Zeolite and Microporous Materials: Preceedings of the 11th International Zeolite Conference, H. Chon, S. K. Ihm, and Y. S. Uh, Eds., vol. 105 of Studies in Surface Science and Catalysis, pp. 439–446, Elsevier, Amsterdam, The Netherlands, 1995. View at Publisher · View at Google Scholar
  76. D. P. Siantar, W. S. Millman, and J. J. Fripiat, “Structural defects and cation exchange capacity in dealuminated Y zeolites,” Zeolites, vol. 15, no. 6, pp. 556–560, 1995. View at Google Scholar · View at Scopus
  77. W. Lutz, H. Toufar, D. Heidemann et al., “Siliceous extra-framework species in dealuminated Y zeolites generated by steaming,” Microporous and Mesoporous Materials, vol. 104, no. 1–3, pp. 171–178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. K. U. Gore, A. Abraham, S. G. Hegde, R. Kumar, J. Amoureux, and S. Ganapathy, “29Si and 27Al MAS/3Q-MAS NMR studies of high silica USY zeolites,” Journal of Physical Chemistry B, vol. 106, no. 23, pp. 6115–6120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Hamid and M. A. Ali, Handbook on MTBE and Other Gasoline Oxygenates, Marcel Dekker, New York, NY, USA, 2004.
  80. D. M. Ginter, A. T. Bell, and C. J. Radke, “The chemistry of NaY crystallization from sodium-silicate solution,” in Symposium on Synthesis of Microporous Materials, M. L. Occelli and H. E. Robson, Eds., vol. 1, pp. 6–30, Van Nostrand, New York, NY, USA, 1992. View at Google Scholar
  81. A. Corma, F. V. Melo, and D. J. Rawlence, “Effect of the nonuniform dealumination on the acidity and catalytic activity of faujasite,” Zeolites, vol. 10, no. 7, pp. 690–694, 1990. View at Google Scholar · View at Scopus
  82. G. Engelhardt, U. Lohse, E. Lippmaa, M. Tarmak, and M. Mägi, “29Si-NMR-Untersuchungen zur Verteilung der Silicium-und Aluminiumatome im Alumosilikatgitter von Zeolithen mit Faujasit-Struktur,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 482, no. 11, pp. 49–64, 1981. View at Publisher · View at Google Scholar
  83. K. Ehrhardt, M. Suckow, and W. Lutz, “Hydrothermal decomposition of aluminosilicate zeolites and prediction of their long-term stability,” in Catalysis by Microporous Materials: Proceedings of ZEOCAT '95, H. K. Beyer, H. G. Karge, I. Kiricsi, and J. B. Nagy, Eds., vol. 94 of Studies in Surface Science and Catalysis, pp. 179–186, Elsevier, 1995. View at Publisher · View at Google Scholar
  84. W. Lutz, E. Löffler, M. Fechtelkord, E. Schreier, and R. Bertram, “Non-framework aluminium in highly dealuminated Y zeolites generated by steaming or substitution,” in Progress in Zeolite and Microporous Materials: Preceedings of the 11th International Zeolite Conference, H. Chon, S.-K. Ihm, and Y. S. Uh, Eds., vol. 105 of Studies in Surface Science and Catalysis, pp. 439–446, Elsevier, 1997. View at Publisher · View at Google Scholar
  85. W. Lutz, D. Heidemann, C. Hübert, and W. Wieker, “Contribution of silica gels to superimposed 29Si MAS NMR spectra of Y zeolites dealuminated by steaming,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 627, no. 11, pp. 2559–2564, 2001. View at Google Scholar
  86. W. Lutz, W. Wieker, D. Müller, M. Schneider, C. H. Rüscher, and J.-C. Buhl, “Phase transformations in alkaline and acid leached Y zeolites dealuminated by steaming,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 626, no. 6, pp. 1460–1467, 2000. View at Google Scholar
  87. W. Lutz, R. Bertram, D. Heidemann, R. Kurzhals, C. H. Rüscher, and G. Kryukova, “Reactivity of extra-framework species of USY zeolites in alkaline medium,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 637, no. 1, pp. 75–82, 2011. View at Publisher · View at Google Scholar
  88. W. Lutz, D. Täschner, R. Kurzhals, D. Heidemann, and C. Hübert, “Characterization of silica gels by 29Si MAS NMR and IR spectroscopic measurements,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 635, no. 13-14, pp. 2191–2196, 2009. View at Publisher · View at Google Scholar
  89. J. Felsche and S. Luger, “Phases and thermal decomposition characteristics of hydro-sodalites Na6+x,[AlSiO4]6,(OH)x·nH2O,” Thermochimica Acta, vol. 118, pp. 35–55, 1987. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Engelhardt, J. Felsche, and P. Sieger, “The hydrosodalite system Na6+x,[SiAlO4]6,(OH)x·nH2O: formation, phase composition, and de- and rehydration studied by 1H, 23Na, and 29Si MAS-NMR spectroscopy in tandem with thermal analysis, X-ray diffraction, and IR spectroscopy,” Journal of the American Chemical Society, vol. 114, no. 4, pp. 1173–1182, 1992. View at Publisher · View at Google Scholar · View at Scopus
  91. J.-C. Buhl, M. Gerstmann, W. Lutz, and A. Ritzmann, “Hydrothermal stability of the novel zeolite type LSX in comparison to the traditional 13X modification,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 630, no. 4, pp. 604–608, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. U. Lohse, Zur Struktur und zu den Adsorptionseigenschaften von siliciumreichen Molekularsieben [Ph.D. thesis], Academy of Sciences of GDR, Berlin, Germany, 1981.
  93. W. Lutz, B. Zibrowius, and E. Löffler, “Hydrothermal and alkaline stability of high-silica Y-type zeolites in dependence on the dealumination procedure,” in Zeolites and Related Microporous Materials: State of the Art 1994—Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17–22 July 1994, J. Weitkamp, H. G. Karge, H. Pfeifer, and W. Hölderich, Eds., vol. 84 of Studies in Surface Science and Catalysis, pp. 1005–1012, Elsevier, 1994. View at Publisher · View at Google Scholar
  94. W. Lutz, B. Zibrowius, and E. Löffler, “Hydrothermal and alkaline stability of high-silica Y zeolites generated by combining substitution and steaming,” in Zeolites: A Refined Tool for Designing Catalytic Sites: Proceedings of the International Zeolite Symposium, L. Bonneviot and S. Kaliaguine, Eds., vol. 84 of Studies in Surface Science and Catalysis, pp. 327–334, Elsevier, 1995. View at Publisher · View at Google Scholar
  95. W. Lutz, D. Heidemann, R. Kurzhals, and G. Kryukova, “Characterisation of siliceous extra-framework species in day zeolites by 29Si MAS NMR and IR spectroscopic measurements,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 636, no. 7, pp. 1361–1367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. W. Lutz, H. Toufar, R. Kurzhals, and M. Suckow, “Investigation and modeling of the hydrothermal stability of technically relevant zeolites,” Adsorption, vol. 11, no. 3-4, pp. 405–413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Dimitrijevic, W. Lutz, and A. Ritzmann, “Hydrothermal stability of zeolites: determination of extra-framework species of H-Y faujasite-type steamed zeolite,” Journal of Physics and Chemistry of Solids, vol. 67, no. 8, pp. 1741–1748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. W. Lutz, “Stabilizing effect of non-framework AL on the structure of dealuminated y zeolites under hydrothermal conditions,” Crystal Research and Technology, vol. 25, no. 8, pp. 921–926, 1990. View at Publisher · View at Google Scholar
  99. A. T. Steel and E. Dooryhee, “Time dependence of the structural changes occurring in NH4-Y zeolite on dealumination: a preliminary study using energy-dispersive X-ray diffraction,” Zeolites, vol. 13, no. 5, pp. 336–340, 1993. View at Google Scholar · View at Scopus
  100. U. Lohse and M. Mildebrath, “Dealuminierte Molekularsiebe vom Typ Y zur Porosität dealuminierter Molekularsiebe,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 476, no. 5, pp. 126–135, 1981. View at Publisher · View at Google Scholar
  101. W. Lutz, E. Löffler, and B. Zibrowius, “Increased hydrothermal stability of highly dealuminated Y zeolites by alumination,” Zeolites, vol. 13, no. 8, pp. 685–686, 1993. View at Google Scholar · View at Scopus
  102. W. Lutz, W. Gessner, R. Bertram, I. Pitsch, and R. Fricke, “Hydrothermally resistant high-silica Y zeolites stabilized by covering with non-framework aluminum species,” Microporous Materials, vol. 12, no. 1–3, pp. 131–139, 1997. View at Google Scholar · View at Scopus
  103. S. Schönherr, H. Görz, W. Gessner, and R. Bertram, “Protolysevorgänge in wäßrigen Aluminiumchloridlösungen,” Zeitschrift für Chemie, vol. 23, no. 12, pp. 429–434, 1983. View at Publisher · View at Google Scholar
  104. I. Pitsch, U. Kürschner, D. Müller et al., “Synthesis, characterization and catalytic activity of amorphous Al,SiOx gels from weakly acidic aqueous solutions,” Journal of Materials Chemistry, vol. 7, pp. 2469–2476, 1997. View at Publisher · View at Google Scholar
  105. M. W. Anderson, J. Klinowski, and X. Liu, “Alumination of highly siliceous zeolites,” Journal of the Chemical Society, Chemical Communications, no. 23, pp. 1596–1597, 1984. View at Publisher · View at Google Scholar
  106. H. Hamdan, S. Endud, H. He, M. N. M. Muhid, and J. Klinowski, “Alumination of the purely siliceous mesoporous molecular sieve MCM-41 and its hydrothermal conversion into zeolite Na-A,” Journal of the Chemical Society, Faraday Transactions, vol. 92, no. 12, pp. 2311–2315, 1996. View at Google Scholar · View at Scopus
  107. C. Yang and Q. Xu, “Aluminated zeolites β and their properties part 1.-Alumination of zeolites β,” Journal of the Chemical Society, Faraday Transactions, vol. 93, pp. 1675–1680, 1997. View at Publisher · View at Google Scholar
  108. W. Lutz, D. L. Hoang, G. Lischke, and B. Parlitz, “Extra-framework aluminium in DAY zeolites as carrier for catalytic ingredients,” in Proceedings of the 3rd Polish-German Zeolite Colloquium, M. Rozwadowski, Ed., pp. 205–214, Nicolas Copernicus University Press, 1998.
  109. W. Lutz, R. Bertram, W. Wieker, and M. Jank, “Adsorber-Katalysator-Komposite für Umweltprozesse,” in Neue Entwicklungen zur adsorptiven Gas- und Wasserreinigung, W. Henschel, Ed., vol. 859 of Freiberger Forschungshefte A: Verfahrenstechnik/Umwelttechnik, p. 256, Bergakademie Freiberg, Freiberg, Germany, 2000. View at Google Scholar
  110. W. Lutz, P. Kleinschmit, and E. Roland, “Removing organic substances from aq. soln. for sepn. of harmful or useful organic substances,” DE Patent 4406776, 1994.
  111. W. Lutz, “Verfahren zum Entfernen von Stoffen aus wäßrigen Lösungen und Adsorptionsmittel,” DE Patent 19531933, 1995.
  112. W. Lutz, D. Hoang, R. Fricke, and H. Lieske, “Asorber/catalyst composite,” DE Patent 19708746, 1997.
  113. W. Lutz, W. Gessner, and R. Bertram, “Hydrothable catalytically active composites for separating organics from fluid phase,” DE Patent 19718929, 1997.
  114. B. Schlicht, H. J. Redlich, G. Höhne, and W. Lutz, “Verfahren zum Entfernen von problembehafteten Schadstoffen aus Abwasser,” DE Patent 10114739, 2001.
  115. C. D. Chang, S. D. Hellering, J. N. Miale, P. W. Schmitt, and E. L. Wu, “Insertion of aluminium into high-silica-content zeolite frameworks. Part 3.-Hydrothermal transfer of aluminium from Al2O3 into [Al]ZSM-5 and [B]ZSM-5,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 81, pp. 2215–2224, 1985. View at Publisher · View at Google Scholar
  116. H. Hamdan and J. Klinowski, “Isomorphous substitution of framework silicon by aluminium in silicalite: factors determining resolution of 29Si magic-angle-spinning NMR spectra of pentasil zeolites,” Chemical Physics Letters, vol. 139, no. 6, pp. 576–580, 1987. View at Publisher · View at Google Scholar
  117. D. W. Breek and G. W. Skeels, “Zeolite chemistry lV-evidence for the elimination and subsequent reinsertion of framework aluminum during the stabilization of NH4+-Exchanged zeolite X,” in Proceedings of the 5th International Conference on Zeolites, L. V. C. Rees, Ed., pp. 335–343, London, UK, 1980.
  118. X. Liu, J. Klinowski, and J. M. Thomas, “Hydrothermal isomorphous insertion of aluminium into the framework of zeolite Y: a convenient method of modifying the siting of Al and Si in faujastic catalysts,” Journal of the Chemical Society, Chemical Communications, no. 8, pp. 582–584, 1986. View at Publisher · View at Google Scholar
  119. H. Hamdan, B. Sulikowski, and J. Klinowski, “Hydrothermal isomorphous substitution of aluminum in faujasitic frameworks: second-generation zeolite catalysts,” Journal of Physical Chemistry, vol. 93, no. 1, pp. 350–356, 1989. View at Google Scholar · View at Scopus
  120. G. Engelhardt and U. Lohse, “A reexamination of the hypothesis of Breck and Skeels concerning the reinsertion of aluminum in the framework of dealuminated Y zeolites,” Journal of Catalysis, vol. 88, no. 2, pp. 513–515, 1984. View at Google Scholar · View at Scopus
  121. J. Klinowski and P. J. Barrie, “Recent advances in zeolite science,” in Proceedings of the Meeting of the British Zeolite Association, B. Delmon and J. T. Yates, Eds., Cambridge, UK, April 1989.
  122. Z. Zhang, X. Liu, Y. Xu, and R. Xu, “Realumination of dealuminated zeolites Y,” Zeolites, vol. 11, no. 3, pp. 232–238, 1991. View at Google Scholar · View at Scopus
  123. M. Nayarana and B. D. Murray, “Process for realuminating zeolites,” U.S. Patent 5118482, 1992.
  124. P. J. Barry, L. F. Gladden, and J. Klinowski, “Neutron diffraction studies of realuminated zeolite Y,” Journal of the Chemical Society, Chemical Communications, no. 8, pp. 592–594, 1991. View at Publisher · View at Google Scholar
  125. V. Calsavara, E. F. Sousa-Aguiar, and N. R. C. Fernandes-Machado, “Reactivity of USY extraframework alumina in alkaline medium,” Zeolites, vol. 17, no. 4, pp. 340–345, 1996. View at Publisher · View at Google Scholar
  126. B. Sulikowski, J. Datka, B. Gil, J. Ptaszynski, and J. Klinowski, “Acidity and catalytic properties of realuminated zeolite Y,” Journal of Physical Chemistry B, vol. 101, no. 35, pp. 6929–6932, 1997. View at Google Scholar · View at Scopus
  127. W. Wang and S. J. Hwang, “Effect of treatment conditions on Y-zeolite,” Chinese Journal of Chemical Engineering, vol. 25, pp. 337–339, 1994. View at Google Scholar
  128. D.-S. Liu, S.-L. Bao, and Q.-H. Xu, “Studies on realumination of dealuminated zeolite Y,” Acta Chimica Sinica, vol. 54, no. 8, pp. 764–771, 1996. View at Google Scholar
  129. W. Lutz, U. Lohse, and B. Fahlke, “Chemical reactions during alkaline treatment of dealuminated Y zeolites—impossibility of aluminium reinsertion into the framework,” Crystal Research and Technology, vol. 23, no. 7, pp. 925–933, 1988. View at Publisher · View at Google Scholar
  130. W. Lutz, D. Heidemann, C. H. Rüscher, and J.-C. Buhl, “Formation of alkali-aluminosilicate layers on thermochemically dealuminated Y zeolites by alkaline leaching,” Crystal Research and Technology, vol. 36, no. 1, pp. 9–14, 2001. View at Google Scholar
  131. M. Fechtelkord, J.-C. Buhl, W. Lutz, and B. Zibrowius, “Realuminierung von Zeolith DAY infolge Si-Abreicherung,” Zeitschrift für Kristallographie, Supplement, vol. 9, p. 154, 1995. View at Google Scholar
  132. R. D. Bezman, “On the efficiency of insertion of aluminium into the framework of Y-type zeolite by the hydrothermal process of Liu, Klinowski, and Thomas,” Journal of Chemical Society, Chemical Communications, pp. 1562–11563, 1987. View at Google Scholar
  133. W. Lutz, W. Gessner, and D. Müller, “Formation of Al-rich aluminosilicate by alkaline treatment of DAY zeolite dealuminated by steaming,” Zeolites, vol. 19, no. 2-3, pp. 209–212, 1997. View at Publisher · View at Google Scholar
  134. S. P. Zhdanov and E. N. Egorova, Chimija Ceolitov, Izd. Nauka, Leningrad, Moscow, Russia, 1968.
  135. H. Stach, U. Lohse, H. Thamm, and W. Schirmer, “Adsorption equilibria of hydrocarbons on highly dealuminated zeolites,” Zeolites, vol. 6, no. 2, pp. 74–90, 1986. View at Google Scholar · View at Scopus
  136. L. Aouali, J. Teanjean, A. Dereigne, P. Tougne, and D. Delafosse, “Structural evolution of dealuminated Y zeolites during various chemical treatments,” Zeolites, vol. 8, no. 6, pp. 517–522, 1988. View at Google Scholar · View at Scopus
  137. R. M. Dessau, E. W. Valyocsik, and N. H. Goeke, “Aluminum zoning in ZSM-5 as revealed by selective silica removal,” Zeolites, vol. 12, no. 7, pp. 776–779, 1992. View at Google Scholar · View at Scopus
  138. J. C. Groen, J. A. Moulijn, and J. Pérez-Ramirez, “Desilication: on the controlled generation of mesoporosity in MFI zeolites,” Journal of Materials Chemistry, vol. 16, pp. 2121–2131, 2006. View at Publisher · View at Google Scholar
  139. D. Verbroekend and J. Pérez-Ramirez, “Design of hierarchical zeolite catalysts by desilication,” Catalysis Science & Technology, vol. 1, no. 6, pp. 879–890, 2011. View at Publisher · View at Google Scholar
  140. W. Lutz, A. Grossmann, M. Bülow, and Th. Gross, “Questioning Klinowski's concept of isomorphous substitution of silicon by aluminium in the framework of silicates,” Crystal Research and Technology, vol. 25, no. 2, pp. 135–138, 1990. View at Publisher · View at Google Scholar
  141. C. Mirodatos and D. Barthemeuf, “Superacid sites in zeolites,” Journal of the Chemical Society, Chemical Communications, no. 2, pp. 39–40, 1981. View at Publisher · View at Google Scholar
  142. W. Lutz, U. Kürschner, and E. Löffler, “Fine-tuning of the catalytic activity of dealuminated faujasites by subsequent chemical treatment,” in Proceedings of the 2nd Polish-German Zeolite Colloquium, M. Rozwadowski, Ed., pp. 165–170, Nicolas Copernicus University Press, 1995.
  143. U. Lohse, H. Stach, H. Thamm et al., “Dealuminierte Molekularsiebe vom Typ Y Bestimmung des Mikro- und Sekundärporenvolumens durch Adsorptionsmessungen,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 460, no. 1, pp. 179–190, 1980. View at Publisher · View at Google Scholar
  144. G. Weber and M. Simonot-Grange, “Characterization of the dealumination effect into H faujasites by adsorption: part 2. The hexane molecule as a pore volume probe,” Zeolites, vol. 14, no. 6, pp. 433–438, 1994. View at Google Scholar · View at Scopus
  145. A. Corma, “From microporous to mesoporous molecular sieve materials and their use in catalysis,” Chemical Reviews, vol. 97, no. 6, pp. 2373–2419, 1997. View at Google Scholar · View at Scopus
  146. C. S. Triantafillidis, A. G. Vlessides, and N. P. Evmiridis, “Dealuminated H−Y zeolites: influence of the degree and the type of dealumination method on the structural and acidic characteristics of H−Y zeolites,” Industrial & Engineering Chemistry Research, vol. 39, no. 2, pp. 307–319, 2000. View at Publisher · View at Google Scholar
  147. K. Sato, Y. Nishimura, N. Matsubayashi, M. Imamura, and H. Shimada, “Structural changes of Y zeolites during ion exchange treatment: effects of Si/Al ratio of the starting NaY,” Microporous and Mesoporous Materials, vol. 59, no. 2-3, pp. 133–146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. W. Lutz, R. A. Shutilov, and V. Y. Gavrilov, “Pore structure of USY zeolites in dependence on steaming condition,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 640, no. 3-4, pp. 577–581, 2014. View at Publisher · View at Google Scholar
  149. S. P. Zhdanov, L. S. Koshelova, T. I. Titova, and M. A. Shubaeva, “IR study of the peculiarities of the stabilization of the NH4Na-Y zeolite structure during its hydrothermal dealumination,” Russian Chemical Bulletin, vol. 42, no. 4, pp. 619–623, 1993. View at Publisher · View at Google Scholar
  150. D. Barthomeuf and B.-H. Ha, “Adsorption of benzene and cyclohexane on faujasite-type zeolites. Part 1.-Thermodynamic properties at low coverage,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 69, pp. 2147–2157, 1973. View at Publisher · View at Google Scholar
  151. P. D. Hopkins, “Adsorption of hydrocarbons on sodium and demetallated synthetic faujasites,” Journal of Catalysis, vol. 29, no. 1, pp. 112–119, 1973. View at Publisher · View at Google Scholar
  152. V. Bosáček, V. Patzelová, C. Hýbl, and Z. Tvarůžková, “Sorption properties of NaxH1−xY zeolites,” Journal of Catalysis, vol. 36, no. 3, pp. 371–378, 1975. View at Publisher · View at Google Scholar
  153. R. K. Iler, The Colloid Chemistry of Silica and Silicates, Cornell University Press, Ithaca, NY, USA, 1955.
  154. A. H. Jansen, A. J. Koster, and K. P. de Jong, “Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y,” Angewandte Chemie International Edition, vol. 40, no. 6, pp. 1102–1104, 2001. View at Google Scholar
  155. J. Lynch, F. Raatz, and P. Dufresne, “Characterization of the textural properties of dealuminated HY forms,” Zeolites, vol. 7, no. 4, pp. 333–340, 1987. View at Google Scholar · View at Scopus
  156. B. Sarkar, K. Arya, G. Ravichandran et al., “Ready-to-use seed composition and process thereof,” USP 20080182744, 2008.
  157. G. J. Ray and A. Samonson, “Double rotation and variable field 27Al n.m.r. study of dealuminated Y zeolites,” Zeolites, vol. 13, no. 6, pp. 410–413, 1993. View at Publisher · View at Google Scholar
  158. D. Ding, B. Li, P. Sun, Q. Jin, and J. Wang, “A simulated annealing study of Si,Al distribution in the faujasite framework,” Zeolites, vol. 15, no. 6, pp. 569–573, 1995. View at Google Scholar · View at Scopus
  159. V. Jorik, “Semiempirical approach to determinationof framework aluminum content in faujasite-type zeolites by X-ray powder diffraction,” Zeolites, vol. 13, no. 3, pp. 187–191, 1993. View at Google Scholar · View at Scopus
  160. E. Merlen, J. Lynch, M. Bisiaux, and F. Raatz, “Surface modifications during Y zeolite dealumination,” Surface and Interface Analysis, vol. 16, no. 1–12, pp. 364–368, 1990. View at Google Scholar · View at Scopus
  161. P. Kortunov, S. Vasenkov, J. Kärger et al., “The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales,” Journal of the American Chemical Society, vol. 127, no. 37, pp. 13055–13059, 2005. View at Publisher · View at Google Scholar · View at Scopus
  162. L. Gueudré, M. Milina, S. Mitchell, and J. J. Pérez-Ramirez, “Superior mass transfer properties of technical zeolite bodies with hierarchical porosity,” Advanced Functional Materials, vol. 24, no. 2, pp. 209–219, 2014. View at Publisher · View at Google Scholar
  163. J. Kärger and R. Valiullin, “Mass transfer in mesoporous materials: the benefit of microscopic diffusion measurement,” Chemical Society Reviews, vol. 42, no. 9, pp. 4172–4197, 2013. View at Publisher · View at Google Scholar
  164. K. Li, J. Valla, and J. Garcia-Martinez, “Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking,” ChemCatChem, vol. 6, no. 1, pp. 46–66, 2014. View at Publisher · View at Google Scholar
  165. K. Möller and Th. Bein, “Mesoporosity—a new dimension for zeolites,” Chemical Society Reviews, vol. 42, pp. 3689–3707, 2013. View at Publisher · View at Google Scholar
  166. M.-Ch. Silaghi, C. Chizallet, and P. Raybaud, “Challenges on molecular aspects of dealumination and desilication of zeolites,” Mocroporous and Mesoporous Materials, vol. 191, pp. 82–96, 2014. View at Publisher · View at Google Scholar
  167. G. Clet, J. C. Jansen, and H. van Bekkum, “Synthesis of a zeolite Y coating on stainless steel support,” Chemistry of Materials, vol. 11, no. 7, pp. 1696–1702, 1999. View at Google Scholar · View at Scopus
  168. W. Lutz, D. Enke, W.-D. Einicke, D. Taschner, and R. Kurzhals, “Mesopores in USY zeolites II,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 638, pp. 2189–2192, 2012. View at Publisher · View at Google Scholar
  169. W. Lutz, D. Enke, W. Einicke, D. Täschner, and R. Kurzhals, “Mesopores in USY zeolites,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 636, no. 15, pp. 2532–2534, 2010. View at Publisher · View at Google Scholar · View at Scopus