Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014 (2014), Article ID 956945, 7 pages
http://dx.doi.org/10.1155/2014/956945
Research Article

Structural Characterization of Silica Particles Extracted from Grass Stenotaphrum secundatum: Biotransformation via Annelids

1Division de Ciencias Naturales y Exactas, Departamento de Ingenieria Quimica, Universidad de Guanajuato, Campus Noria Alta, Guanajuato, GTO 36050, Mexico
2Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Boulevard Juriquilla No. 3001, Queretaro, QRO 76230, Mexico
3Division de Estudios de Posgrado e Investigacion, Instituto Tecnologico de Queretaro, Avenida Tecnologico S/N Esq. Gral. Mariano Escobedo, Col. Centro Historico, Queretaro, QRO 76000, Mexico
4CIATEQ, Av. El Retablo 150, Queretaro, QRO 76150, Mexico

Received 16 October 2013; Revised 22 January 2014; Accepted 12 February 2014; Published 14 April 2014

Academic Editor: Aldo Craievich

Copyright © 2014 A. Espíndola-Gonzalez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. P. Massey, A. R. Ennos, and S. E. Hartley, “Silica in grasses as a defence against insect herbivores: contrasting effects on folivores and a phloem feeder,” Journal of Animal Ecology, vol. 75, no. 2, pp. 595–603, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. P. B. Kaufman, P. Dayanandan, C. I. Franklin, and Y. Takeoka, “Structure and function of silica bodies in the epidermal system of grass shoots,” Annals of Botany, vol. 55, no. 4, pp. 487–507, 1985. View at Google Scholar · View at Scopus
  3. F. J. Ma and N. Yamaji, “Silicon uptake and accumulation in higher plants,” Trends in Plant Science, vol. 11, no. 8, pp. 392–397, 2006. View at Publisher · View at Google Scholar
  4. D. W. Parry, M. J. Hodson, and A. G. Sangster, “Some recent advances in studies of silicon in higher plants [and Discussion],” Philosophical Transactions of the Royal Society B, vol. 304, no. 1121, pp. 537–549, 1984. View at Publisher · View at Google Scholar
  5. F. M. Jian, K. Tamai, N. Yamaji et al., “A silicon transporter in rice,” Nature, vol. 440, no. 7084, pp. 688–691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. J. Ma, “Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses,” Soil Science and Plant Nutrition, vol. 50, no. 1, pp. 11–18, 2004. View at Publisher · View at Google Scholar
  7. N. Yamaji, N. Mitatni, and F. M. Jian, “A transporter regulating silicon distribution in rice shoots,” Plant Cell, vol. 20, no. 5, pp. 1381–1389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. F. Ma, N. Mitani, S. Nagao et al., “Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice,” Plant Physiology, vol. 136, no. 2, pp. 3284–3289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. K. R. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, John Wiley & Sons, Toronto, Canada, 1979.
  10. A. Espindola-Gonzalez, A. L. Martinez-Hernandez, C. Angeles, V. M. Castano, and C. Velasco-Santos, “Novel crystalline SiO2 nanoparticles via annelids bioprocessing of agro-industrial wastes,” Nanoscale Research Letters, vol. 5, no. 9, pp. 1408–1417, 2010. View at Google Scholar
  11. J. D. Sauer, “Revision of Stenotaphrum (Gramineae: paniceae) with attention to its historical geography,” Brittonia, vol. 24, no. 2, pp. 202–222, 1972. View at Publisher · View at Google Scholar
  12. A. D. Genovesi, R. W. Jessup, M. C. Egelke, and B. L. Burson, “Interploid St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] hybrids recovered by embryo rescue,” In Vitro Cellular & Developmental Biology—Plant, vol. 45, no. 6, pp. 659–666, 2009. View at Publisher · View at Google Scholar
  13. L. E. Datnoff, M. O. Brecht, C. M. Stiles, and B. A. Rutherford, “The role of silicon in suppressing foliar diseases in warm season turf,” International Turfgrass Society Research Journal, vol. 10, pp. 175–179, 2005. View at Google Scholar
  14. S. Adhikary, “Vermicompost, the story of organic gold: a review,” Agricultural Sciences, vol. 3, no. 7, pp. 905–917, 2012. View at Publisher · View at Google Scholar
  15. C. A. Edwards and J. R. Lofty, Biology of Earthworms, Bookworm Publishing Company, Beckville, Tex, USA, 1976.
  16. E. Albanell, J. Plaixats, and T. Cabrero, “Chemical changes during vermicomposting (Eisenia fetida) of sheep manure mixed with cotton industrial wastes,” Biology and Fertility of Soils, vol. 6, no. 3, pp. 266–269, 1988. View at Google Scholar · View at Scopus
  17. J.-F. Ponge, “Humus forms in terrestrial ecosystems: a framework to biodiversity,” Soil Biology and Biochemistry, vol. 35, no. 7, pp. 935–945, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Lavelle, “Earthworm activities and the soil system,” Biology and Fertility of Soils, vol. 6, no. 3, pp. 237–251, 1988. View at Publisher · View at Google Scholar · View at Scopus
  19. P. P. Provencio and V. J. Polyak, “Iron oxide-rich filaments: possible fossil bacteria in Lechuguilla Cave, New Mexico,” Geomicrobiology Journal, vol. 18, no. 3, pp. 297–309, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. B. R. Frankel and A. D. Bazylinski, “Biologically induced mineralization by bacteria,” Reviews in Mineralogy and Geochemistry, vol. 54, no. 1, pp. 95–114, 2003. View at Publisher · View at Google Scholar
  21. L. Gago-Duport, M. J. I. Briones, J. B. Rodríguez, and B. Covelo, “Amorphous calcium carbonate biomineralization in the earthworm's calciferous gland: pathways to the formation of crystalline phases,” Journal of Structural Biology, vol. 162, no. 3, pp. 422–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Mendez, J. B. Rodriguez-González, R. Alvarez-Otero, I. M. J. Briones, and L. Gago-Duport, “Crystallization stages of the CaCO3 deposits in the earthworm’s calciferous gland,” in EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany, pp. 127–128, Springer, Berlin, Germany, 2008. View at Publisher · View at Google Scholar
  23. A. C. Edwards and E. K. Fletcher, “Interactions between earthworms and microorganisms in organic-matter breakdown,” Agriculture, Ecosystems & Environment, vol. 24, no. 1–3, pp. 235–247, 1988. View at Publisher · View at Google Scholar
  24. M. G. Gad, T. K. Semple, and M. H. Lappin-Scott, Micro-Organisms and Earth Systems, Society for General Microbiology. Symposium 65, Cambridge University Press, Cambridge, UK, 2005.
  25. J. W. Stucki, J. Wu, H. Gan, P. Komadel, and A. Banin, “Effects of iron oxidation state and organic cations on dioctahedral smectite hydration,” Clays and Clay Minerals, vol. 48, no. 2, pp. 290–298, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Kitagawa, “Determination of allophane and amorphous inorganic matter in clay fraction of soils I. Allophane and allophane-halloysite mixture,” Soil Science and Plant Nutrition, vol. 22, no. 2, pp. 137–147, 1976. View at Publisher · View at Google Scholar
  27. M. R. Hazen, T. R. Downs, P. A. Jones, and L. Kah, “Carbon mineralogy and crystal chemistry,” Reviews in Mineralogy and Geochemistry, vol. 75, no. 1, pp. 7–46, 2013. View at Publisher · View at Google Scholar
  28. A. L. Radu, G. I. Truica, R. Penu, V. Moroeanu, and S. C. Litescu, “Use of the Fourier transform infrared spectroscopy in characterization of specific samples,” UPB Scientific Bulletin B: Chemical and Materials Science, vol. 74, no. 4, pp. 137–148, 2012. View at Google Scholar
  29. C. Ascaso, L. G. Sancho, and C. Rodriguez-Pascual, “The weathering action of saxicolous lichens in maritime Antarctica,” Polar Biology, vol. 11, no. 1, pp. 33–39, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. M. B. Caruta, Nanomaterials Researchs, Nova Science Publisher, New York, Ny, USA, 2006.
  31. B. J. Saikia, G. Parthasarathy, and N. C. Sarmah, “Spectroscopic Characterization of Olivine [(Fe,Mg)2SiO4] in Mahadevpur H4/5 ordinary chondrite,” Journal of Ameican Science, vol. 5, pp. 71–78, 2009. View at Google Scholar
  32. G. Jovanovski, P. Makreski, B. Kaitner, and B. Boev, “Silicate minerals from Macedonia. Complementary use of vibrational spectroscopy and X-ray powder diffraction for identification and detection purposes,” Croatica Chemica Acta, vol. 82, no. 2, pp. 363–386, 2009. View at Google Scholar · View at Scopus