Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014, Article ID 965821, 8 pages
http://dx.doi.org/10.1155/2014/965821
Research Article

Influences of Mg Doping on the Electrochemical Performance of TiO2 Nanodots Based Biosensor Electrodes

State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Received 19 November 2014; Accepted 15 December 2014; Published 29 December 2014

Academic Editor: Hossein Moayedi

Copyright © 2014 M. S. H. Al-Furjan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Ma, R. Yuan, Y. Chai, and S. Chen, “Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on DNA-silver nanohybrids and PDDA-protected gold nanoparticles,” Journal of Molecular Catalysis B: Enzymatic, vol. 56, no. 4, pp. 215–220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. H.-S. Wang, Q.-X. Pan, and G.-X. Wang, “A biosensor based on immobilization of horseradish peroxidase in chitosan matrix cross-linked with glyoxal for amperometric determination of hydrogen peroxide,” Sensors, vol. 5, no. 4-5, pp. 266–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Chen, R. Yuan, Y. Chai, B. Yin, W. Li, and L. Min, “Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on core-shell organosilica@chitosan nanospheres and multiwall carbon nanotubes composite,” Electrochimica Acta, vol. 54, no. 11, pp. 3039–3046, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. H.-L. Zhang, G.-S. Lai, D.-Y. Han, and A.-M. Yu, “An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres,” Analytical and Bioanalytical Chemistry, vol. 390, no. 3, pp. 971–977, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Thenmozhi and S. Sriman Narayanan, “Amperometric hydrogen peroxide sensor based on a sol-gel-derived ceramic carbon composite electrode with toluidine blue covalently immobilized using 3-aminopropyltrimethoxysilane,” Analytical and Bioanalytical Chemistry, vol. 387, no. 3, pp. 1075–1082, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Thenmozhi and S. S. Narayanan, “Electrochemical sensor for H2O2 based on thionin immobilized 3-aminopropyltrimethoxy silane derived sol-gel thin film electrode,” Sensors and Actuators B: Chemical, vol. 125, no. 1, pp. 195–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Zhao and H. Jiang, “Enzyme-based electrochemical biosensors,” in Biosensors, P. A. Serra, Ed., InTech, 2010. View at Publisher · View at Google Scholar
  8. X. Han, W. Huang, J. Jia, S. Dong, and E. Wang, “Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H2O2,” Biosensors and Bioelectronics, vol. 17, no. 9, pp. 741–746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. R. S. Freire, C. A. Pessoa, L. D. Mello, and L. T. Kubota, “Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity,” Journal of the Brazilian Chemical Society, vol. 14, no. 2, pp. 230–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Rezaei-Zarchi, M. Negahdary, M. Doroudian et al., “Direct electron transfer of Myoglobin on nickel oxide Nanoparticles modified graphite electrode,” Advances in Environmental Biology, vol. 5, no. 10, pp. 3241–3248, 2011. View at Google Scholar · View at Scopus
  11. P. He, N. Hu, and J. F. Rusling, “Driving forces for layer-by-layer self-assembly of films of SiO2 nanoparticles and heme proteins,” Langmuir, vol. 20, no. 3, pp. 722–729, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Xiao, W. Lu, and X. Yao, “Direct electron transfer and electrocatalysis of hemoglobin on chitosan-TiO2 nanorods-glass carbon electrode,” Electroanalysis, vol. 20, no. 20, pp. 2247–2252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. You, T. G. Kim, and Y.-M. Sung, “Synthesis of Cu-doped TiO2 nanorods with various aspect ratios and dopant concentrations,” Crystal Growth and Design, vol. 10, no. 2, pp. 983–987, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Anpo, “Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method,” Pure and Applied Chemistry, vol. 72, no. 9, pp. 1787–1792, 2000. View at Google Scholar · View at Scopus
  15. A. Fuerte, M. D. Hernández-Alonso, A. J. Maira et al., “Visible light-activated nanosized doped-TiO2 photocatalysts,” Chemical Communications, no. 24, pp. 2718–2719, 2001. View at Google Scholar · View at Scopus
  16. H. Yamashita, M. Harada, J. Misaka et al., “Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation: metal ion-implantation and ionized cluster beam method,” Journal of Synchrotron Radiation, vol. 8, no. 2, pp. 569–571, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Di Paola, G. Marcì, L. Palmisano et al., “Preparation of polycrystalline Tio2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol,” The Journal of Physical Chemistry B, vol. 106, no. 3, pp. 637–645, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. R. R. Pandey, K. K. Saini, and M. Dhayal, “Using nano-arrayed structures in Sol-Gel derived Mn2+ doped Tio2 for high sensitivity ureabiosensor,” Journal of Biosensors & Bioelectronics, vol. 1, pp. 1–4, 2010. View at Google Scholar
  19. X. Shi, M. Nakagawa, G. Kawachi, L. Xu, and K. Ishikawa, “Surface modification of titanium by hydrothermal treatment in Mg-containing solution and early osteoblast responses,” Journal of Materials Science: Materials in Medicine, vol. 23, no. 5, pp. 1281–1290, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. M. S. Hammadi, K. Cheng, and W. Weng, “Influence of microstructure on performance of TiO2 nanodots film based biosensor electrodes,” Key Engineering Materials, vol. 605, pp. 155–158, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Luo, K. Cheng, W. Weng et al., “Size- and density-controlled synthesis of TiO2 nanodots on a substrate by phase-separation-induced self-assembly,” Nanotechnology, vol. 20, no. 21, Article ID 215605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. C. Veitch, “Horseradish peroxidase: a modern view of a classic enzyme,” Phytochemistry, vol. 65, no. 3, pp. 249–259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Lu, Q. Zhang, L. Zhang, and J. Li, “Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid,” Electrochemistry Communications, vol. 8, no. 5, pp. 874–878, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Yu, Y. Lin, L. Xiang, L. Su, J. Zhang, and L. Mao, “Molecular films of water-miscible ionic liquids formed on glassy carbon electrodes: characterization and electrochemical applications,” Langmuir, vol. 21, no. 20, pp. 9000–9006, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Y. Zhao, W. Zheng, Z. X. Meng et al., “Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film,” Biosensors and Bioelectronics, vol. 24, no. 8, pp. 2352–2357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Li, K. Cheng, W. Weng, P. Du, and G. Han, “Highly sensitive hydrogen peroxide biosensors based on TiO2 nanodots/ITO electrodes,” Journal of Materials Chemistry, vol. 22, no. 18, pp. 9019–9026, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Xie, Y. Zhao, X. Chen, H. Liu, D. G. Evans, and W. Yang, “Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor,” Biomaterials, vol. 32, no. 27, pp. 6588–6594, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Lu, H. Zhang, Y. Ni, Q. Zhang, and J. Chen, “Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors,” Biosensors and Bioelectronics, vol. 24, no. 1, pp. 93–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Y.-H. Won, D. Aboagye, H. S. Jang, A. Jitianu, and L. A. Stanciu, “Core/shell nanoparticles as hybrid platforms for the fabrication of a hydrogen peroxide biosensor,” Journal of Materials Chemistry, vol. 20, no. 24, pp. 5030–5034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. Silva, D. M. Pimentel, R. D. C. S. Luz, and F. S. Damos, “Direct electron transfer kinetics of horseradish peroxidase on self-assembled monolayer/gold nanoparticles decorated multi-walled carbon nanotubes,” International Journal of Electrochemical Science, vol. 7, no. 2, pp. 1348–1358, 2012. View at Google Scholar · View at Scopus
  31. Z. Matharu, J. Enomoto, and A. Revzin, “Miniature enzyme-based electrodes for detection of hydrogen peroxide release from alcohol-injured hepatocytes,” Analytical Chemistry, vol. 85, no. 2, pp. 932–939, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Wang, X. Ma, Y. Wen, Y. Xing, Z. Zhang, and H. Yang, “Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase based on gold nano-seeds dotted TiO2 nanocomposite,” Biosensors and Bioelectronics, vol. 25, no. 11, pp. 2442–2446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. A. Ansari, P. R. Solanki, and B. D. Malhotra, “Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film,” Journal of Biotechnology, vol. 142, no. 2, pp. 179–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. J. Teng, S. H. Zuo, and M. B. Lan, “Direct electron transfer of Horseradish peroxidase on porous structure of screen-printed electrode,” Biosensors and Bioelectronics, vol. 24, no. 5, pp. 1353–1357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. N. Miller and J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, Pearson/Prentice Hall, 5th edition, 2005.
  36. R. A. Kamin and G. S. Wilson, “Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer,” Analytical Chemistry, vol. 52, no. 8, pp. 1198–1205, 1980. View at Publisher · View at Google Scholar · View at Scopus