Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2015, Article ID 691403, 9 pages
Research Article

A Split Island Layout Style of Butting/Inserted Substrate Pickups for NMOSFET ESD Reliability

1Department of Electronics Engineering, Chien Hsin University of Science and Technology, No. 229, Chien-Hsin Road, Zhongli District, Taoyuan City 320, Taiwan
2Department of Electronic Engineering, Ming Chuan University, No. 5 De Ming Road, Gui-Shan District, Taoyuan City 333, Taiwan
3ProbeLeader Co. Ltd., Hsinchu City 300, Taiwan
4Field Application Engineering Department, Innolux Corp., Miola County 350, Taiwan

Received 9 February 2015; Accepted 4 May 2015

Academic Editor: Rui Wang

Copyright © 2015 Chih-Yao Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Butting/inserted pickup layout style could result in severe ESD degradation of NMOS devices beyond deep submicron technology. A split island layout style of butting/inserted substrate pickups is designed for a multifinger NMOS structure to enhance its ESD reliability. This layout style divides the substrate pickup diffusion bands along the whole polygate finger direction into segmented diffusion islands in the source area. This layout technique could improve the TLP second breakdown current of the 1.8 V butting pickup structure by 58~66% and 1.8 V/3.3 V inserted pickup case by 2.8 times. This style also shows excellent enhancement for the ESD/HBM levels of the 1.8 V and 3.3 V butting pickup case by 2.1~2.3 times and 18%~6 times, respectively, and the 1.8 V and 3.3 V inserted pickup case by 2.4~2.9 times and 13%~6 times, respectively. This simple technique could restore the ESD threshold level of the butting/inserted pickup layout style back to that of the normal GGNMOS without any further area consumption or fabrication cost.