Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2017, Article ID 2676432, 6 pages
https://doi.org/10.1155/2017/2676432
Review Article

Formation and Physical Properties of h-BN Atomic Layers: A First-Principles Density-Functional Study

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Correspondence should be addressed to Yoshitaka Fujimoto; pj.ca.hcetit.syhp.tats@otomijuf

Received 15 June 2017; Accepted 20 July 2017; Published 22 August 2017

Academic Editor: Achim Trampert

Copyright © 2017 Yoshitaka Fujimoto. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Berger, Z. Song, X. Li et al., “Electronic confinement and coherence in patterned epitaxial graphene,” Science, vol. 302, pp. 1191–1196, 2006. View at Google Scholar
  4. E. V. Castro, K. S. Novoselov, S. V. Morozov et al., “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Physical Review Letters, vol. 99, no. 21, Article ID 216802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Zhang, T.-T. Tang, C. Girit et al., “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature, vol. 459, no. 7248, pp. 820–823, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. R. Williams, L. DiCalro, and C. M. Marcus, “Quantum hall effect in a gate-controlled p-n junction of graphene,” Science, vol. 317, no. 5838, pp. 638–641, 2007. View at Publisher · View at Google Scholar
  8. A. F. Young and P. Kim, “Quantum interference and Klein tunnelling in graphene heterojunctions,” Nature Physics, vol. 5, pp. 222–226, 2009. View at Google Scholar
  9. D. Pacile, J. C. Meyer, C. O. Girit, and A. Zettl, “In-line phase-contrast imaging of a biological specimen using a compact laser-Compton scattering-based x-ray source,” Applied Physics Letters, vol. 92, no. 13, Article ID 133107, 2008. View at Google Scholar
  10. C. Jin, F. Lin, K. Suenaga, and S. Iijima, “Fabrication of a Freestanding Boron Nitride Single Layer and Its Defect Assignments,” Physical Review Letters, vol. 102, no. 19, 2009. View at Publisher · View at Google Scholar
  11. C. R. Dean, A. F. Young, I. Meric et al., “Boron nitride substrates for high-quality graphene electronics,” Nature Nanotechnology, vol. 5, no. 10, pp. 722–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. N. H. Shon and T. Ando, “Quantum Transport in Two-Dimensional Graphite System,” Journal of the Physical Society of Japan, vol. 67, pp. 2421–2429, 1998. View at Publisher · View at Google Scholar
  13. K. Watanabe, T. Taniguchi, and H. Kanda, “Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal,” Nature Materials, vol. 3, pp. 404–409, 2004. View at Publisher · View at Google Scholar
  14. L. Song, L. Ci, H. Lu et al., “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Letters, vol. 10, no. 8, pp. 3209–3215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, “Quasiparticle band structure of bulk hexagonal boron nitride and related systems,” Physical Review B, vol. 51, no. 11, pp. 6868–6875, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, “Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure,” Science, vol. 317, no. 5840, pp. 932–934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, and M. Taniguchi, “Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride,” Nature Photonics, vol. 3, no. 10, pp. 591–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Huang, X. K. Cao, H. X. Jiang, J. Y. Lin, and S. H. Wei, “Origin of the significantly enhanced optical transitions in layered boron nitride,” Physical Review B, vol. 86, Article ID 155202, 2012. View at Google Scholar
  19. Y. Fujimoto and S. Saito, “Band engineering and relative stabilities of hexagonal boron nitride bilayers under biaxial strain,” Physical Review B, vol. 94, Article ID 245427, 2016. View at Google Scholar
  20. R. Dahal, J. Li, S. Majety et al., “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material,” Applied Physics Letters, vol. 98, no. 21, Article ID 211110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Majety, J. Li, X. K. Cao et al., “Epitaxial growth and demonstration of hexagonal BN/AlGaN p-n junctions for deep ultraviolet photonics,” Applied Physics Letters, vol. 100, no. 6, Article ID 061121, 2012. View at Google Scholar
  22. T. Sugino, K. Tanioka, S. Kawasaki, and J. Shirafuji, “Characterization and field emission of sulfur-doped boron nitride synthesized by plasma-assisted chemical vapor deposition,” Japanese Journal of Applied Physics, vol. 36, part 2, p. L463, 1997. View at Publisher · View at Google Scholar
  23. J. Li, S. Majety, R. Dahal, W. P. Zhao, J. Y. Lin, and H. X. Jiang, “Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers,” Applied Physics Letters, vol. 101, no. 17, Article ID 171112, 2012. View at Google Scholar
  24. E. Machado-Charry, P. Boulanger, L. Genovese, N. Mousseau, and P. Pochet, “Tunable magnetic states in hexagonal boron nitride sheets,” Applied Physics Letters, vol. 101, no. 13, Article ID 132405, 2012. View at Publisher · View at Google Scholar
  25. J. C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, and U. Kaiser, “Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes,” Nano Letters, vol. 9, no. 7, pp. 2683–2689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Kotakoski, C. H. Jin, O. Lehtinen, K. Suenaga, and A. V. Krasheninnikov, “Electron knock-on damage in hexagonal boron nitride monolayers,” Physical Review B—Condensed Matter and Materials Physics, vol. 82, no. 11, Article ID 113404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Alem, R. Erni, C. Kisielowski, M. D. Rossell, W. Gannett, and A. Zettl, “Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy,” Physical Review B—Condensed Matter and Materials Physics, vol. 80, no. 15, Article ID 155425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Fujimoto and S. Saito, “Energetics and electronic structures of pyridine-type defects in nitrogen-doped carbon nanotubes,” Physica E, vol. 43, no. 3, pp. 677–680, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Fujimoto and S. Saito, “Structure and stability of hydrogen atom adsorbed on nitrogen-doped carbon nanotubes,” Journal of Physics: Conference Series, vol. 302, no. 1, Article ID 012006, 2011. View at Google Scholar
  30. Y. Fujimoto and S. Saito, “Hydrogen adsorption and anomalous electronic properties of nitrogen-doped graphene,” Journal of Applied Physics, vol. 115, no. 15, Article ID 153701, 2014. View at Google Scholar
  31. O. L. Krivanek, M. F. Chisholm, V. Nicolosi et al., “Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy,” Nature, vol. 464, no. 7288, pp. 571–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Wei, M.-S. Wang, Y. Bando, and D. Golberg, “Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes,” ACS Nano, vol. 5, no. 4, pp. 2916–2922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Wei, M.-S. Wang, Y. Bando, and D. Golberg, “Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation,” Journal of the American Chemical Society, vol. 132, no. 39, pp. 13592-13593, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Berseneva, A. V. Krasheninnikov, and R. M. Nieminen, “Berseneva, Krasheninnikov, and Nieminen reply:,” Physical Review Letters, vol. 107, no. 23, Article ID 239602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Berseneva, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, “Electronic structure of boron nitride sheets doped with carbon from first-principles calculations,” Physical Review B—Condensed Matter and Materials Physics, vol. 87, no. 3, Article ID 035404, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Zhou, Q. Wang, Q. Sun, and P. Jena, “Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine,” Physical Review B, vol. 81, Article ID 085442, 2010. View at Google Scholar
  37. M. Kan, J. Zhou, Q. Wang, Q. Sun, and P. Jena, “Tuning the band gap and magnetic properties of BN sheets impregnated with graphene flakes,” Physical Review B, vol. 84, no. 20, Article ID 205412, 2011. View at Publisher · View at Google Scholar
  38. J. Li and V. B. Shenoy, “Graphene quantum dots embedded in hexagonal boron nitride sheets,” Applied Physics Letters, vol. 98, no. 1, Article ID 013105, 2011. View at Google Scholar
  39. A. Ramasubramaniam and D. Naveh, “Carrier-induced antiferromagnet of graphene islands embedded in hexagonal boron nitride,” Physical Review B, vol. 84, no. 7, Article ID 075405, 2011. View at Publisher · View at Google Scholar
  40. L. Ci, L. Song, C. Jin et al., “Atomic layers of hybridized boron nitride and graphene domains,” Nature Materials, vol. 9, no. 5, pp. 430–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Fujimoto and S. Saito, “Effects of strain on carbon donors and acceptors in hexagonal boron nitride monolayers,” Physical Review B, vol. 93, Article ID 045402, 2016. View at Google Scholar
  42. Y. Fujimoto and K. Hirose, “First-principles treatments of electron transport properties for nanoscale junctions,” Physical Review B, vol. 67, Article ID 195315, 2004. View at Google Scholar
  43. Y. Fujimoto, K. Hirose, and T. Ohno, “Calculations of surface electronic structures by the overbridging boundary-matching method,” Surface Science, vol. 586, no. 1–3, pp. 74–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Fujimoto and K. Hirose, “First-principles calculation method of electron-transport properties of metallic nanowires,” Nanotechnology, vol. 14, no. 2, pp. 147–151, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Fujimoto, Y. Asari, H. Kondo, J. Nara, and T. Ohno, “First-principles study of transport properties of Al wires: Comparison between crystalline and jellium electrodes,” Physical Review B, vol. 72, no. 11, Article ID 113407, 2005. View at Publisher · View at Google Scholar
  46. T. Ono, S. Tsukamoto, Y. Egami, and Y. Fujimoto, “Real-space calculations for electron transport properties of nanostructures,” Journal of Physics: Condensed Matter, vol. 23, no. 39, Article ID 394203, 2011. View at Google Scholar
  47. A. J. Du, Y. Chen, Z. Zhu, R. Amal, G. Q. Lu, and S. C. Smith, “Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in boron-nitride nanostructures,” Journal of the American Chemical Society, vol. 131, no. 47, pp. 17354–17359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. H.-X. Yang, M. Chshiev, D. W. Boukhvalov, X. Waintal, and S. Roche, “Inducing and optimizing magnetism in graphene nanomeshes,” Physical Review B - Condensed Matter and Materials Physics, vol. 84, no. 21, Article ID 214404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. E. H. Lieb, “Two theorems on the Hubbard model,” Physical Review Letters, vol. 62, no. 10, pp. 1201–1204, 1989. View at Publisher · View at Google Scholar · View at MathSciNet
  50. Y. Fujimoto, T. Koretsune, S. Saito, T. Miyake, and A. Oshiyama, “A new crystalline phase of four-fold coordinated silicon and germanium,” New Journal of Physics, vol. 10, Article ID 083001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Fujimoto and A. Oshiyama, “Formation and Stability of 90 Degree Dislocation Cores in Ge Films on Si(001),” AIP Conference Proceedings, vol. 1399, no. 1, p. 185, 2011. View at Google Scholar
  52. Y. Fujimoto and S. Saito, “Atomic geometries and electronic structures of hexagonal boron-nitride bilayers under strain,” Journal of the Ceramic Society of Japan, vol. 123, no. 1439, pp. 576–578, 2015. View at Google Scholar
  53. Y. Fujimoto and S. Saito, “Interlayer distances and band-gap tuning of hexagonal boron-nitride bilayers,” Journal of the Ceramic Society of Japan, vol. 124, no. 5, pp. 584–586, 2016. View at Google Scholar
  54. Y. Fujimoto, T. Koretsune, and S. Saito, “Electronic structures of hexagonal boron-nitride monolayer: strain-induced effects,” Journal of the Ceramic Society of Japan, vol. 122, no. 1425, pp. 346–348, 2014. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Tersoff and D. R. Hamann, “Theory and application for the scanning tunneling microscope,” Physical Review Letters, vol. 50, no. 25, pp. 1998–2001, 1983. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Tersoff and D. R. Hamann, “Theory of the scanning tunneling microscope,” Physical Review B, vol. 31, Article ID 805, 1985. View at Publisher · View at Google Scholar
  57. Y. Fujimoto, H. Okada, K. Endo, T. Ono, S. Tsukamoto, and K. Hirose, “Images of scanning tunneling microscopy on the Si(001)-p2×2 reconstructed surface,” Materials Transactions, vol. 42, no. 11, pp. 2247–2252, 2001. View at Publisher · View at Google Scholar
  58. H. Okada, Y. Fujimoto, K. Endo, K. Hirose, and Y. Mori, “Detailed analysis of scanning tunneling microscopy images of the Si(001) reconstructed surface with buckled dimers,” Physical Review B, vol. 63, no. 19, Article ID 195324, 2001. View at Publisher · View at Google Scholar
  59. Y. Fujimoto and A. Oshiyama, “Structural stability and scanning tunneling microscopy images of strained Ge films on Si(001),” Physical Review B, vol. 87, Article ID 075323, 2013. View at Google Scholar
  60. Y. Fujimoto, H. Okada, K. Inagaki, H. Goto, K. Endo, and K. Hirose, “Theoretical study on the scanning tunneling microscopy image of Cl-Adsorbed Si(001),” Japanese Journal of Applied Physics, vol. 42, part 1, no. 8, p. 5267, 2003. View at Publisher · View at Google Scholar
  61. Y. Fujimoto and A. Oshiyama, “Atomic structures and energetics of 90° dislocation cores in Ge films on Si(001),” Physical Review B, vol. 81, Article ID 205309, 2010. View at Google Scholar
  62. L. Zhao, M. Levendorf, S. Goncher et al., “Local atomic and electronic structure of boron chemical doping in monolayer graphene,” Nano Letters, vol. 13, no. 10, pp. 4659–4665, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Fujimoto and S. Saito, “Energetics and scanning tunneling microscopy images of B and N defects in Graphene Bilayer,” Springer Proceedings in Physics, vol. 186, pp. 107–112, 2017. View at Google Scholar
  64. Y. Fujimoto and S. Saito, “Formation, stabilities, and electronic properties of nitrogen defects in graphene,” Physical Review B, vol. 84, Article ID 245446, 2011. View at Google Scholar
  65. Y. Fujimoto and S. Saito, “Gas adsorption, energetics and electronic properties of boron- and nitrogen-doped bilayer graphenes,” Chemical Physics, vol. 478, pp. 55–61, 2016. View at Publisher · View at Google Scholar
  66. Y. Fujimoto and S. Saito, “Electronic structures and stabilities of bilayer graphene doped with boron and nitrogen,” Surface Science, vol. 634, pp. 57–61, 2015. View at Publisher · View at Google Scholar