Table of Contents Author Guidelines Submit a Manuscript
Anemia
Volume 2012, Article ID 265790, 18 pages
http://dx.doi.org/10.1155/2012/265790
Review Article

Disrupted Signaling through the Fanconi Anemia Pathway Leads to Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

1Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Experimental Hematology 69120, Heidelberg, Germany
2Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM) gGmbH, 69120 Heidelberg, Germany

Received 9 January 2012; Accepted 13 March 2012

Academic Editor: Laura Hays

Copyright © 2012 Anja Geiselhart et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Taniguchi and A. D. D'Andrea, “Molecular pathogenesis of Fanconi anemia: recent progress,” Blood, vol. 107, no. 11, pp. 4223–4233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. B. P. Alter, “Cancer in Fanconi anemia, 1927–2001,” Cancer, vol. 97, no. 2, pp. 425–440, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. D. I. Kutler, B. Singh, J. Satagopan et al., “A 20-year perspective on the international Fanconi anemia registry (IFAR),” Blood, vol. 101, no. 4, pp. 1249–1256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Vaz, H. Hanenberg, B. Schuster et al., “Mutation of the RAD51C gene in a Fanconi anemia-like disorder,” Nature Genetics, vol. 42, no. 5, pp. 406–409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. G. P. Crossan, L. Van Der Weyden, I. V. Rosado et al., “Disruption of mouse SLX4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia,” Nature Genetics, vol. 43, no. 2, pp. 147–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Kim, F. P. Lach, R. Desetty, H. Hanenberg, A. D. Auerbach, and A. Smogorzewska, “Mutations of the SLX4 gene in Fanconi anemia,” Nature Genetics, vol. 43, no. 2, pp. 142–146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Stoepker, K. Hain, B. Schuster et al., “SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype,” Nature Genetics, vol. 43, no. 2, pp. 138–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Garcia-Higuera, T. Taniguchi, S. Ganesan et al., “Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway,” Molecular Cell, vol. 7, no. 2, pp. 249–262, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Kee and A. D. D'Andrea, “Expanded roles of the Fanconi anemia pathway in preserving genomic stability,” Genes and Development, vol. 24, no. 16, pp. 1680–1694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. L. Strausberg, E. A. Feingold, L. H. Grouse et al., “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 16899–16903, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. T. A. Titus, Y. L. Yan, C. Wilson et al., “The Fanconi anemia/brca gene network in zebrafish: embryonic expression and comparative genomics,” Mutation Research, vol. 668, no. 1-2, pp. 117–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. McVey, “Strategies for DNA interstrand crosslink repair: insights from worms, flies, frogs, and slime molds,” Environmental and Molecular Mutagenesis, vol. 51, no. 6, pp. 646–658, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. K. Holloway, S. Mohan, G. Balmus et al., “Mammalian BTBD12 (SLX4) protects against genomic instability during mammalian spermatogenesis,” Plos Genetics, vol. 7, no. 6, Article ID e1002094, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Abdu, A. González-Reyes, A. Ghabrial, and T. Schüpbach, “The drosophila spn-d gene encodes a RAD51C-like protein that is required exclusively during meiosis,” Genetics, vol. 165, no. 1, pp. 197–204, 2003. View at Google Scholar · View at Scopus
  15. K. Y. Lee, K. Y. Chung, and H. S. Koo, “The involvement of fancm, fanci, and checkpoint proteins in the interstrand DNA crosslink repair pathway is conserved in C. elegans,” DNA Repair, vol. 9, no. 4, pp. 374–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. R. Meetei, A. L. Medhurst, C. Ling et al., “A human ortholog of archaeal DNA repair protein hef is defective in Fanconi anemia complementation group M,” Nature Genetics, vol. 37, no. 9, pp. 958–963, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. D. Auerbach, “Fanconi anemia diagnosis and the diepoxybutane (DEB) test,” Experimental Hematology, vol. 21, no. 6, pp. 731–733, 1993. View at Google Scholar · View at Scopus
  18. J. Cervenka, D. Arthur, and C. Yasis, “Mitomycin c test for diagnostic differentiation of idiopathic aplastic anemia and Fanconi anemia,” Pediatrics, vol. 67, no. 1, pp. 119–127, 1981. View at Google Scholar · View at Scopus
  19. C. C. Chen, T. Taniguchi, and A. D'Andrea, “The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents,” Journal of Molecular Medicine, vol. 85, no. 5, pp. 497–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Kondo, A. Takahashi, E. Mori et al., “FANCD1/BRCA2 plays predominant role in the repair of DNA damage induced by ACNU or TMZ,” PLoS One, vol. 6, no. 5, Article ID e19659, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. S. Sasaki and A. Tonomura, “A high susceptibility of fanconi's anemia to chromosome breakage by DNA cross linking agents,” Cancer Research, vol. 33, no. 8, pp. 1829–1836, 1973. View at Google Scholar · View at Scopus
  22. T. N. Kaiser, A. Lojewski, and C. Dougherty, “Flow cytometric characterization of the response of fanconi's anemia cells to mitomycin C treatment,” Cytometry, vol. 2, no. 5, pp. 291–297, 1982. View at Google Scholar · View at Scopus
  23. M. Kubbies, D. Schindler, H. Hoehn, A. Schinzel, and P.S. Rabinovitch, “Endogenous blockage and delay of the chromosome cycle despite normal recruitment and growth phase explain poor proliferation and frequent edomitosis in Fanconi anemia cells,” The American Journal of Human Genetics, vol. 37, pp. 1022–1030, 1985. View at Google Scholar
  24. R. Miglierina, M. Le Coniat, and R. Berger, “A simple diagnostic test for Fanconi anemia by flow cytometry,” Analytical Cellular Pathology, vol. 3, no. 2, pp. 111–118, 1991. View at Google Scholar · View at Scopus
  25. S. Chandra, O. Levran, I. Jurickova et al., “A rapid method for retrovirus-mediated identification of complementation groups in Fanconi anemia patients,” Molecular Therapy, vol. 12, no. 5, pp. 976–984, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Hanenberg, S. D. Batish, K. E. Pollok et al., “Phenotypic correction of primary Fanconi anemia t cells with retroviral vectors as a diagnostic tool,” Experimental Hematology, vol. 30, no. 5, pp. 410–420, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. L. S. Haneline, H. E. Broxmeyer, S. Cooper et al., “Multiple inhibitory cytokines induce deregulated progenitor growth and apoptosis in hematopoietic cells from fac(-/-) mice,” Blood, vol. 91, no. 11, pp. 4092–4098, 1998. View at Google Scholar · View at Scopus
  28. R. K. Rathbun, G. R. Faulkner, M. H. Ostroski et al., “Inactivation of the Fanconi anemia group C gene augments interferon-γ- induced apoptotic responses in hematopoietic cells,” Blood, vol. 90, no. 3, pp. 974–985, 1997. View at Google Scholar · View at Scopus
  29. C. Dufour, A. Corcione, J. Svahn et al., “Tnf-α and ifn-γ are overexpressed in the bone marrow of Fanconi anemia patients and tnf-α suppresses erythropoiesis in vitro,” Blood, vol. 102, no. 6, pp. 2053–2059, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Rosselli, J. Sanceau, E. Gluckman, J. Wietzerbin, and E. Moustacchi, “Abnormal lymphokine production: a novel feature of the genetic disease Fanconi anemia. ii. in vitro and in vivo spontaneous overproduction of tumor necrosis factor α,” Blood, vol. 83, no. 5, pp. 1216–1225, 1994. View at Google Scholar · View at Scopus
  31. J. Li, D. P. Sejas, X. Zhang et al., “Tnf-α induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells,” Journal of Clinical Investigation, vol. 117, no. 11, pp. 3283–3295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. D. Auerbach and R. G. Allen, “Leukemia and preleukemia in Fanconi anemia patients: a review of the literature and report of the international Fanconi anemia registry,” Cancer Genetics and Cytogenetics, vol. 51, no. 1, pp. 1–12, 1991. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Butturini, R. P. Gale, P. C. Verlander, B. Adler-Brecher, A. P. Gillio, and A. D. Auerbach, “Hematologic abnormalities in Fanconi anemia: an international Fanconi anemia registry study,” Blood, vol. 84, no. 5, pp. 1650–1655, 1994. View at Google Scholar · View at Scopus
  34. G. P. Bagnara, P. Strippoli, L. Bonsi et al., “Effect of stem cell factor on colony growth from acquired and constitutional (Fanconi) aplastic anemia,” Blood, vol. 80, no. 2, pp. 382–387, 1992. View at Google Scholar · View at Scopus
  35. G. Daneshbod-Skibba, J. Martin, and N. T. Shahidi, “Myeloid and erythroid colony growth in non-anaemic patients with Fanconi's anaemia,” British Journal of Haematology, vol. 44, no. 1, pp. 33–38, 1980. View at Google Scholar · View at Scopus
  36. G. M. Segal, R. E. Magenis, M. Brown et al., “Repression of Fanconi anemia gene (FACC) expression inhibits growth of hematopoietic progenitor cells,” Journal of Clinical Investigation, vol. 94, no. 2, pp. 846–852, 1994. View at Google Scholar · View at Scopus
  37. P. F. Kelly, S. Radtke, C. von Kalle et al., “Stem cell collection and gene transfer in Fanconi anemia,” Molecular Therapy, vol. 15, no. 1, pp. 211–219, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. D. Auerbach, Q. Liu, R. Ghosh, M. S. Pollack, G. W. Douglas, and H. E. Broxmeyer, “Prenatal identification of potential donors for umbilical cord blood transplantation for Fanconi anemia,” Transfusion, vol. 30, no. 8, pp. 682–687, 1990. View at Google Scholar · View at Scopus
  39. A. Farzin, S. M. Davies, F. O. Smith et al., “Matched sibling donor haematopoietic stem cell transplantation in fanconi anaemia: an update of the cincinnati children's experience,” British Journal of Haematology, vol. 136, no. 4, pp. 633–640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. P. L. Tan, J. E. Wagner, A. D. Auerbach, T. E. DeFor, A. Slungaard, and M. L. MacMillan, “Successful engraftment without radiation after fludarabine-based regimen in Fanconi anemia patients undergoing genotypically identical donor hematopoietic cell transplantation,” Pediatric Blood and Cancer, vol. 46, no. 5, pp. 630–636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. Q. Waisfisz, N. V. Morgan, M. Savino et al., “Spontaneous functional correction of homozygous fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism,” Nature Genetics, vol. 22, no. 4, pp. 379–383, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Gross, H. Hanenberg, S. Lobitz et al., “Reverse mosaicism in Fanconi anemia: natural gene therapy via molecular self-correction,” Cytogenetic and Genome Research, vol. 98, no. 2-3, pp. 126–135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Mankad, T. Taniguchi, B. Cox et al., “Natural gene therapy in monozygotic twins with Fanconi anemia,” Blood, vol. 107, no. 8, pp. 3084–3090, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. T. M. Dexter, T. D. Allen, and L. G. Lajtha, “Conditions controlling the proliferation of haemopoietic stem cells in vitro,” Journal of Cellular Physiology, vol. 91, no. 3, pp. 335–344, 1977. View at Google Scholar · View at Scopus
  45. C. J. Eaves, J. D. Cashman, H. J. Sutherland et al., “Molecular analysis of primitive hematopoietic cell proliferation control mechanisms,” Annals of the New York Academy of Sciences, vol. 628, pp. 298–306, 1991. View at Google Scholar · View at Scopus
  46. R. E. Ploemacher, J. P. Van Der Sluijs, J. S. A. Voerman, and N. H. C. Brons, “An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse,” Blood, vol. 74, no. 8, pp. 2755–2763, 1989. View at Google Scholar · View at Scopus
  47. A. Butturini and R. P. Gale, “Long-term bone marrow culture in persons with Fanconi anemia and bone marrow failure,” Blood, vol. 83, no. 2, pp. 336–339, 1994. View at Google Scholar · View at Scopus
  48. G. Martinez-Jaramillo, L. Espinoza-Hernandez, H. Benitez-Aranda, and H. Mayani, “Long-term proliferation in vitro of hematopoietic progenitor cells from children with congenital bone marrow failure: effect of rhGM-CSF and rhEPO,” European Journal of Haematology, vol. 64, pp. 173–181, 2000. View at Google Scholar
  49. M. Chen, D. J. Tomkins, W. Auerbach et al., “Inactivation of fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia,” Nature Genetics, vol. 12, no. 4, pp. 448–451, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Lapidot, F. Pflumio, M. Doedens, B. Murdoch, D. E. Williams, and J. E. Dick, “Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in scid mice,” Science, vol. 255, no. 5048, pp. 1137–1141, 1992. View at Google Scholar · View at Scopus
  51. L. Murray, D. DiGiusto, B. Chen et al., “Analysis of human hematopoietic stem cell populations,” Blood Cells, vol. 20, no. 2-3, pp. 364–370, 1994. View at Google Scholar · View at Scopus
  52. J. C. M. Van der Loo, H. Hanenberg, R. J. Cooper, F. Y. Luo, E. N. Lazaridis, and D. A. Williams, “Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells,” Blood, vol. 92, no. 7, pp. 2556–2570, 1998. View at Google Scholar · View at Scopus
  53. J. Vormoor, T. Lapidot, F. Pflumio et al., “Scid mice as an in vivo model of human cord blood hematopoiesis,” Blood Cells, vol. 20, no. 2-3, pp. 316–322, 1994. View at Google Scholar · View at Scopus
  54. O. Cohen-Haguenauer, B. Péault, C. Bauche et al., “In vivo repopulation ability of genetically corrected bone marrow cells from Fanconi anemia patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2340–2345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. W. Du, X. E. Li, J. Sipple, and Q. Pang, “Overexpression of il-3rα on CD34+CD38- stem cells defines leukemia-initiating cells in Fanconi anemia AML,” Blood, vol. 117, no. 16, pp. 4243–4252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Tulpule, M. William Lensch, J. D. Miller et al., “Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage,” Blood, vol. 115, no. 17, pp. 3453–3462, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. P. G. Kim and G. Q. Daley, “Application of induced pluripotent stem cells to hematologic disease application of ipsc to hematologic disease,” Cytotherapy, vol. 11, no. 8, pp. 980–989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. Á. Raya, I. Rodríguez-Piz, G. Guenechea et al., “Disease-corrected haematopoietic progenitors from fanconi anaemia induced pluripotent stem cells,” Nature, vol. 460, no. 7251, pp. 53–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. L. U. Muller, M. D. Milsom, C. E. Harris et al., “Overcoming reprogramming resistance of Fanconi anemia cells,” Blood. In press. View at Publisher · View at Google Scholar
  61. E. Szabo, S. Rampalli, R. M. Risueño et al., “Direct conversion of human fibroblasts to multilineage blood progenitors,” Nature, vol. 468, no. 7323, pp. 521–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Knoll and H. Puchta, “The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants,” Journal of Experimental Botany, vol. 62, no. 5, pp. 1565–1579, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. J. M. Buerstedde and S. Takeda, “Increased ratio of targeted to random integration after transfection of chicken b cell lines,” Cell, vol. 67, no. 1, pp. 179–188, 1991. View at Google Scholar · View at Scopus
  64. S. Hirano, K. Yamamoto, M. Ishiai et al., “Functional relationships of FANCC to homologous recombination, translesion synthesis, and blm,” EMBO Journal, vol. 24, no. 2, pp. 418–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Ishiai, H. Kitao, A. Smogorzewska et al., “Fanci phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway,” Nature Structural and Molecular Biology, vol. 15, no. 11, pp. 1138–1146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Yamamoto, S. Hirano, M. Ishiai et al., “Fanconi anemia protein fancd2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination,” Molecular and Cellular Biology, vol. 25, no. 1, pp. 34–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Yamamoto, M. Ishiai, N. Matsushita et al., “Fanconi anemia fancg protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by homologous recombination in vertebrate cells,” Molecular and Cellular Biology, vol. 23, no. 15, pp. 5421–5430, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. K. N. Yamamoto, S. Kobayashi, M. Tsuda et al., “Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 16, pp. 6492–6496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. A. D. D'Andrea and M. Grompe, “The fanconi anaemia/BRCA pathway,” Nature Reviews Cancer, vol. 3, no. 1, pp. 23–34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. D. Traver, A. Winzeler, H. M. Stern et al., “Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation,” Blood, vol. 104, no. 5, pp. 1298–1305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. J. L. O. De Jong, C. E. Burns, A. T. Chen et al., “Characterization of immune-matched hematopoietic transplantation in zebrafish,” Blood, vol. 117, no. 16, pp. 4234–4242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. T. X. Liu, N. G. Howlett, M. Deng et al., “Knockdown of zebrafish fancd2 causes developmental abnormalities via p53-dependent apoptosis,” Developmental Cell, vol. 5, no. 6, pp. 903–914, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Rodríguez-Marí, C. Cañestro, R. A. BreMiller et al., “Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis,” Plos Genetics, vol. 6, no. 7, Article ID e1001034, pp. 1–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. M. J. Kiel, O. H. Yilmaz, T. Iwashita, O. H. Yilmaz, C. Terhorst, and S. J. Morrison, “Slam family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells,” Cell, vol. 121, no. 7, pp. 1109–1121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. O. H. Yilmaz, M. J. Kiel, and S. J. Morrison, “Slam family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity,” Blood, vol. 107, no. 3, pp. 924–930, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. S. T. Bakker, H. J. van de Vrugt, M. A. Rooimans et al., “Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M,” Human Molecular Genetics, vol. 18, no. 18, pp. 3484–3495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. S. T. Bakker, H. J. vandeVrugt, J. A. Visser et al., “Fancf-deficient mice are prone to develop ovarian tumours,” The Journal of Pathology, vol. 226, pp. 28–39, 2012. View at Google Scholar
  78. E. C. Friedberg and L. B. Meira, “Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage version 7,” DNA Repair, vol. 5, no. 2, pp. 189–209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Neveling, D. Endt, H. Hoehn, and D. Schindler, “Genotype-phenotype correlations in Fanconi anemia,” Mutation Research, vol. 668, no. 1-2, pp. 73–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. K. Parmar, A. D'Andrea, and L. J. Niedernhofer, “Mouse models of Fanconi anemia,” Mutation Research, vol. 668, no. 1-2, pp. 133–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. N. C. Cheng, H. J. Van De Vrugt, M. A. Van Der Valk et al., “Mice with a targeted disruption of the Fanconi anemia homolog Franca,” Human Molecular Genetics, vol. 9, no. 12, pp. 1805–1811, 2000. View at Google Scholar · View at Scopus
  82. M. Koomen, N. C. Cheng, H. J. Van De Vrugt et al., “Reduced fertility and hypersensitivity to mitomycin C characterize Fancg/Xrcc9 null mice,” Human Molecular Genetics, vol. 11, no. 3, pp. 273–281, 2002. View at Google Scholar · View at Scopus
  83. M. A. Whitney, G. Royle, M. J. Low et al., “Germ cell defects and hematopoietic hypersensitivity to γ-interferon in mice with a targeted disruption of the Fanconi anemia C gene,” Blood, vol. 88, no. 1, pp. 49–58, 1996. View at Google Scholar · View at Scopus
  84. J. C. Y. Wong, N. Alon, C. Mckerlie, J. R. Huang, M. S. Meyn, and M. Buchwald, “Targeted disruption of exons 1 to 6 of the Fanconi anemia group a gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia,” Human Molecular Genetics, vol. 12, no. 16, pp. 2063–2076, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Yang, Y. Kuang, R. M. De Oca et al., “Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9,” Blood, vol. 98, no. 12, pp. 3435–3440, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Hadjur, K. Ung, L. Wadsworth et al., “Defective hematopoiesis and hepatic steatosis in mice with combined deficiencies of the genes encoding FANCC and Cu/Zn superoxide dismutase,” Blood, vol. 98, no. 4, pp. 1003–1011, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Li, S. Chen, J. Yuan et al., “Mesenchymal stem/progenitor cells promote the reconstitution of exogenous hematopoietic stem cells in Fancg-/- mice in vivo,” Blood, vol. 113, no. 10, pp. 2342–2351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. K. P. Battaile, R. L. Bateman, D. Mortimer et al., “In vivo selection of wild-type hematopoietic stem cells in a murine model of Fanconi anemia,” Blood, vol. 94, no. 6, pp. 2151–2158, 1999. View at Google Scholar · View at Scopus
  89. M. Carreau, O. I. Gan, L. Liu, M. Doedens, J. E. Dick, and M. Buchwald, “Hematopoietic compartment of Fanconi anemia group C null mice contains fewer lineage-negative CD34+ primitive hematopoietic cells and shows reduced reconstitution ability,” Experimental Hematology, vol. 27, no. 11, pp. 1667–1674, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. L. S. Haneline, T. A. Gobbett, R. Ramani et al., “Loss of FANCC function results in decreased hematopoietic stem cell repopulating ability,” Blood, vol. 94, no. 1, pp. 1–8, 1999. View at Google Scholar · View at Scopus
  91. O. Habi, M. C. Delisle, N. Messier, and M. Carreau, “Lack of self-renewal capacity in FANCC-/- stem cells after ex vivo expansion,” Stem Cells, vol. 23, no. 8, pp. 1135–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. X. Li, M. M. Le Beau, S. Ciccone et al., “Ex vivo culture of FANCC-/- stem/progenitor cells predisposes cells to undergo apoptosis, and surviving stem/progenitor cells display cytogenetic abnormalities and an increased risk of malignancy,” Blood, vol. 105, no. 9, pp. 3465–3471, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. L. S. Haneline, X. Li, S. L. M. Ciccone et al., “Retroviral-mediated expression of recombinant FANCC enhances the repopulating ability of FANCC-/- hematopoietic stem cells and decreases the risk of clonal evolution,” Blood, vol. 101, no. 4, pp. 1299–1307, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. P. Río, J. C. Segovia, H. Hanenberg et al., “In vitro phenotypic correction of hematopoietic progenitors from Fanconi anemia group a knockout mice,” Blood, vol. 100, no. 6, pp. 2032–2039, 2002. View at Google Scholar · View at Scopus
  95. K. Yamada, A. Ramezani, R. G. Hawley et al., “Phenotype correction of Fanconi anemia group a hematopoietic stem cells using lentiviral vector,” Molecular Therapy, vol. 8, no. 4, pp. 600–610, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Parmar, J. Kim, S. M. Sykes et al., “Hematopoietic stem cell defects in mice with deficiency of Fancd2 or Usp1,” Stem Cells, vol. 28, no. 7, pp. 1188–1195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. Q. S. Zhang, L. Marquez-Loza, L. Eaton et al., “Fancd2-/- mice have hematopoietic defects that can be partially corrected by resveratrol,” Blood, vol. 116, no. 24, pp. 5140–5148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Navarro, N. W. Meza, O. Quintana-Bustamante et al., “Hematopoietic dysfunction in a mouse model for Fanconi anemia group D1,” Molecular Therapy, vol. 14, no. 4, pp. 525–535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. P. Río, N. W. Meza, Á. González-Murillo et al., “In vivo proliferation advantage of genetically corrected hematopoietic stem cells in a mouse model of Fanconi anemia Fa-D1,” Blood, vol. 112, no. 13, pp. 4853–4861, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Carreau, O. I. Gan, L. Liu et al., “Bone marrow failure in the Fanconi anemia group C mouse model after DNA damage,” Blood, vol. 91, no. 8, pp. 2737–2744, 1998. View at Google Scholar · View at Scopus
  101. A. C. Pulliam-Leath, S. L. Ciccone, G. Nalepa et al., “Genetic disruption of both FANCC and fancg in mice recapitulates the hematopoietic manifestations of Fanconi anemia,” Blood, vol. 116, no. 16, pp. 2915–2920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. G. D. Trobridge and H. P. Kiem, “Large animal models of hematopoietic stem cell gene therapy,” Gene Therapy, vol. 17, no. 8, pp. 939–948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. Q. Pang and P. R. Andreassen, “Fanconi anemia proteins and endogenous stresses,” Mutation Research, vol. 668, no. 1-2, pp. 42–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Joenje, F. Arwert, A. W. Eriksson, H. de Koning, and A. B. Oostra, “Oxygen-dependence of chromosomal aberrations in Fanconi's anaemia,” Nature, vol. 290, pp. 142–143, 1981. View at Google Scholar
  105. G. Pagano, P. Degan, M. D'Ischia et al., “Oxidative stress as a multiple effector in fanconi anaemia clinical phenotype,” European Journal of Haematology, vol. 75, no. 2, pp. 93–100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. S. J. Park, S. L. M. Ciccone, B. D. Beck et al., “Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins,” Journal of Biological Chemistry, vol. 279, no. 29, pp. 30053–30059, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. M. R. Saadatzadeh, K. Bijangi-Vishehsaraei, P. Hong, H. Bergmann, and L. S. Haneline, “Oxidant hypersensitivity of Fanconi anemia type c-deficient cells is dependent on a redox-regulated apoptotic pathway,” Journal of Biological Chemistry, vol. 279, no. 16, pp. 16805–16812, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. D. Schindler and H. Hoehn, “Fanconi anemia mutation causes cellular susceptibility to ambient oxygen,” American Journal of Human Genetics, vol. 43, no. 4, pp. 429–435, 1988. View at Google Scholar · View at Scopus
  109. J. Li, W. Du, S. Maynard, P. R. Andreassen, and Q. Pang, “Oxidative stress-specific interaction between FANCD2 and FOXO3a,” Blood, vol. 115, no. 8, pp. 1545–1548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Chen, Y. Liu, R. Liu et al., “TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species,” Journal of Experimental Medicine, vol. 205, no. 10, pp. 2397–2408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Ito, K. Takubo, F. Arai et al., “Regulation of reactive oxygen species by atm is essential for proper response to DNA double-strand breaks in lymphocytes,” Journal of Immunology, vol. 178, no. 1, pp. 103–110, 2007. View at Google Scholar · View at Scopus
  112. Y. Y. Jang and S. J. Sharkis, “A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche,” Blood, vol. 110, no. 8, pp. 3056–3063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. K. Miyamoto, T. Miyamoto, R. Kato, A. Yoshimura, N. Motoyama, and T. Suda, “FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging,” Blood, vol. 112, no. 12, pp. 4485–4493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. Z. Tothova, R. Kollipara, B. J. Huntly et al., “Foxos are critical mediators of hematopoietic stem cell resistance tophysiologic oxidative stress,” Cell, vol. 128, no. 2, pp. 325–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. T. Yahata, T. Takanashi, Y. Muguruma et al., “Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells,” Blood, vol. 118, pp. 2941–2950, 2011. View at Google Scholar
  116. C. Marietta, L. H. Thompson, J. E. Lamerdin, and P. J. Brooks, “Acetaldehyde stimulates fancd2 monoubiquitination, h2ax phosphorylation, and BRCA1 phosphorylation in human cells in vitro: implications for alcohol-related carcinogenesis,” Mutation Research, vol. 664, no. 1-2, pp. 77–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. F. Langevin, G. P. Crossan, I. V. Rosado, M. J. Arends, and K. J. Patel, “Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice,” Nature, vol. 475, no. 7354, pp. 53–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. K. L. Chan, T. Palmai-Pallag, S. Ying, and I. D. Hickson, “Replication stress induces sister-chromatid bridging at fragile site loci in mitosis,” Nature Cell Biology, vol. 11, no. 6, pp. 753–760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. V. Naim and F. Rosselli, “The fanc pathway and blm collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities,” Nature Cell Biology, vol. 11, no. 6, pp. 761–768, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. P. Vinciguerra, S. A. Godinho, K. Parmar, D. Pellman, and A. D. D'Andrea, “Cytokinesis failure occurs in Fanconi anemia pathway-deficient murine and human bone marrow hematopoietic cells,” Journal of Clinical Investigation, vol. 120, no. 11, pp. 3834–3842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. S. M. Vanderwerf, J. Svahn, S. Olson et al., “TLR8-dependent TNF-α overexpression in Fanconi anemia group C cells,” Blood, vol. 114, no. 26, pp. 5290–5298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. J. C. Schultz and N. T. Shahidi, “Tumor necrosis factor-α overproduction in fanconi's anemia,” American Journal of Hematology, vol. 42, no. 2, pp. 196–201, 1993. View at Publisher · View at Google Scholar · View at Scopus
  123. F. Rosselli, J. Sanceau, J. Wietzerbin, and E. Moustacchi, “Abnormal lymphokine production: a novel feature of the genetic disease Fanconi anemia. I. Involvement of interleukin-6,” Human Genetics, vol. 89, pp. 42–48, 1992. View at Google Scholar
  124. D. Briot, G. Macé-Aimé, F. Subra, and F. Rosselli, “Aberrant activation of stress-response pathways leads to tnf-α oversecretion in Fanconi anemia,” Blood, vol. 111, no. 4, pp. 1913–1923, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. P. S. Koh, G. C. Hughes, G. R. Faulkner, W. W. Keeble, and G. C. Bagby, “The Fanconi anemia group C gene product modulates apoptotic responses to tumor necrosis factor-α and fas ligand but does not suppress expression of receptors of the tumor necrosis factor receptor superfamily,” Experimental Hematology, vol. 27, no. 1, pp. 1–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Otsuki, S. Nagakura, J. Wang, M. Bloom, M. Grompe, and J. M. Liu, “Tumor necrosis factor-alpha and CD95 ligation suppress erythropoiesis in Fanconi anemia C gene knockout mice,” Journal of Cellular Physiology, vol. 179, pp. 79–86, 1999. View at Google Scholar
  127. Q. Pang, W. Keeble, T. A. Christianson, G. R. Faulkner, and G. C. Bagby, “FANCC interacts with Hsp70 to protect hematopoietic cells from IFN-γ/TNF-α-mediated cytotoxicity,” EMBO Journal, vol. 20, no. 16, pp. 4478–4489, 2001. View at Publisher · View at Google Scholar · View at Scopus
  128. S. R. Fagerlie, T. Koretsky, B. Torok-Storb, and G. C. Bagby, “Impaired type i ifn-induced jak/stat signaling in FA-C cells and abnormal CD4+ Th cell subsets in FANCC-/- mice,” Journal of Immunology, vol. 173, no. 6, pp. 3863–3870, 2004. View at Google Scholar · View at Scopus
  129. Q. Pang, S. Fagerlie, T. A. Christianson et al., “The Fanconi anemia protein FANCC binds to and facilitates the activation of stat1 by gamma interferon and hematopoietic growth factors,” Molecular and Cellular Biology, vol. 20, no. 13, pp. 4724–4735, 2000. View at Publisher · View at Google Scholar · View at Scopus
  130. R. L. Bennett, W. L. Blalock, D. M. Abtahi, Y. Pan, S. A. Moyer, and W. S. May, “Rax, the pkr activator, sensitizes cells to inflammatory cytokines, serum withdrawal, chemotherapy, and viral infection,” Blood, vol. 108, no. 3, pp. 821–829, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. Q. Pang, T. A. Christianson, W. Keeble et al., “The Fanconi anemia complementation group C gene product: structural evidence of multifunctionality,” Blood, vol. 98, no. 5, pp. 1392–1401, 2001. View at Publisher · View at Google Scholar · View at Scopus
  132. X. Li, Y. Yang, J. Yuan et al., “Continuous in vivo infusion of interferon-gamma (IFN-γ) preferentially reduces myeloid progenitor numbers and enhances engraftment of syngeneic wild-type cells in FANCC-/- mice,” Blood, vol. 104, no. 4, pp. 1204–1209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. Si, S. Ciccone, F. C. Yang et al., “Continuous in vivo infusion of interferon-gamma (IFN-γ) enhances engraftment of syngeneic wild-type cells in Fanca-/- and Fancg-/- mice,” Blood, vol. 108, no. 13, pp. 4283–4287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. D. P. Sejas, R. Rani, Y. Qiu et al., “Inflammatory reactive oxygen species-mediated hemopoietic suppression in FANCC-deficient mice,” Journal of Immunology, vol. 178, no. 8, pp. 5277–5287, 2007. View at Google Scholar · View at Scopus
  135. X. Zhang, D. P. Sejas, Y. Qiu, D. A. Williams, and Q. Pang, “Inflammatory ros promote and cooperate with the Fanconi anemia mutation for hematopoietic senescence,” Journal of Cell Science, vol. 120, no. 9, pp. 1572–1583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. K. Bijangi-Vishehsaraei, M. R. Saadatzadeh, A. Werne et al., “Enhanced tnf-α-induced apoptosis in Fanconi anemia type c-deficient cells is dependent on apoptosis signal-regulating kinase 1,” Blood, vol. 106, no. 13, pp. 4124–4130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. M. D. Milsom, B. Schiedlmeier, J. Bailey et al., “Ectopic hoxb4 overcomes the inhibitory effect of tumor necrosis factor-α on Fanconi anemia hematopoietic stem and progenitor cells,” Blood, vol. 113, no. 21, pp. 5111–5120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. C. J. Pronk, O. P. Veiby, D. Bryder, and S. E. W. Jacobsen, “Tumor necrosis factor restricts hematopoietic stem cell activity in mice: involvement of two distinct receptors,” Journal of Experimental Medicine, vol. 208, no. 18, pp. 1563–1570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. M. L. MacMillan, M. R. Hughes, S. Agarwal, and G. Q. Daley, “Cellular therapy for Fanconi anemia: the past, present, and future,” Biology of Blood and Marrow Transplantation, vol. 17, no. 1, pp. S109–S114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. E. Gluckman, A. Devergie, H. Bourdeau-Esperou et al., “Transplantation of umbilical cord blood in fanconi's anemia,” Nouvelle Revue Francaise D'hematologie, vol. 32, no. 6, pp. 423–425, 1990. View at Google Scholar · View at Scopus
  141. A. D. Auerbach, B. Adler, R. J. O'Reilly, D. Kirkpatrick, and R. S. Chaganti, “Effect of procarbazine and cyclophosphamide on chromosome breakage in Fanconi anemia cells: relevance to bone marrow transplantation,” Cancer Genetics and Cytogenetics, vol. 9, pp. 25–36, 1983. View at Google Scholar
  142. E. Gluckman, R. Berger, and J. Dutreix, “Bone marrow transplantation for Fanconi anemia,” Seminars in Hematology, vol. 21, pp. 20–26, 1984. View at Google Scholar
  143. M. L. MacMillan and J. E. Wagner, “Haematopoeitic cell transplantation for fanconi anaemia—when and how?” British Journal of Haematology, vol. 149, no. 1, pp. 14–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. R. Pasquini, J. Carreras, M. C. Pasquini et al., “Hla-matched sibling hematopoietic stem cell transplantation for Fanconi anemia: comparison of irradiation and nonirradiation containing conditioning regimens,” Biology of Blood and Marrow Transplantation, vol. 14, no. 10, pp. 1141–1147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. L. K. Diamond and N. T. Shahidi, “Treatment of aplastic anemia in children,” Seminars in Hematology, vol. 4, pp. 278–288, 1967. View at Google Scholar
  146. N. T. Shahidi and L. K. Diamond, “Testosterone-induced remission in aplastic anemia of both acquired and congenital types. further observations in 24 cases,” the New England Journal of Medicine, vol. 264, pp. 953–967, 1961. View at Google Scholar · View at Scopus
  147. I. Velazquez and B. P. Alter, “Androgens and liver tumors: fanconi's anemia and non-fanconi's conditions,” American Journal of Hematology, vol. 77, no. 3, pp. 257–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  148. E. C. Guinan, K. Dunn Lopez, R. D. Huhn, J. M. Felser, and D. G. Nathan, “Evaluation of granulocyte-macrophage colony-stimulating factor for treatment of pancytopenia in children with Fanconi anemia,” Journal of Pediatrics, vol. 124, no. 1, pp. 144–150, 1994. View at Google Scholar · View at Scopus
  149. W. R. Rackoff, A. Orazi, C. A. Robinson et al., “Prolonged administration of granulocyte colony-stimulating factor (filgrastim) to patients with Fanconi anemia: a pilot study,” Blood, vol. 88, no. 5, pp. 1588–1593, 1996. View at Google Scholar · View at Scopus
  150. D. B. Kohn, “Update on gene therapy for immunodeficiencies,” Clinical Immunology, vol. 135, pp. 247–254, 2010. View at Google Scholar
  151. K. L. Watts, J. Adair, and H. P. Kiem, “Hematopoietic stem cell expansion and gene therapy,” Cytotherapy, vol. 13, pp. 1164–1171, 2011. View at Google Scholar
  152. J. M. Liu, S. Kim, E. J. Read et al., “Engraftment of hematopoietic progenitor cells transduced with the Fanconi anemia group C gene (FANCC),” Human Gene Therapy, vol. 10, no. 14, pp. 2337–2346, 1999. View at Publisher · View at Google Scholar · View at Scopus
  153. C. E. Walsh, M. Grompe, E. Vanin et al., “A functionally active retrovirus vector for gene therapy in Fanconi anemia group C,” Blood, vol. 84, no. 2, pp. 453–459, 1994. View at Google Scholar · View at Scopus
  154. M. D. Milsom, A. W. Lee, Y. Zheng, and J. A. Cancelas, “FANCA-/- hematopoietic stem cells demonstrate a mobilization defect which can be overcome by administration of the RAC inhibitor NSC23766,” Haematologica, vol. 94, no. 7, pp. 1011–1015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. A. C. Pulliam, M. J. Hobson, S. L. Ciccone et al., “AMD3100 synergizes with G-CSF to mobilize repopulating stem cells in Fanconi anemia knockout mice,” Experimental Hematology, vol. 36, no. 9, pp. 1084–1090, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. K. W. Christopherson, G. Hangoc, C. R. Mantel, and H. E. Broxmeyer, “Modulation of hematopoietic stem cell homing and engraftment by CD26,” Science, vol. 305, no. 5686, pp. 1000–1003, 2004. View at Publisher · View at Google Scholar · View at Scopus
  157. F. Mazurier, M. Doedens, O. I. Gan, and J. E. Dick, “Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells,” Nature Medicine, vol. 9, no. 7, pp. 959–963, 2003. View at Publisher · View at Google Scholar · View at Scopus
  158. L. U. W. Müller, M. D. Milsom, M. O. Kim, A. Schambach, T. Schuesler, and D. A. Williams, “Rapid lentiviral transduction preserves the engraftment potential of FANCA-/- hematopoietic stem cells,” Molecular Therapy, vol. 16, no. 6, pp. 1154–1160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. Y. Si, A. C. Pulliam, Y. Linka et al., “Overnight transduction with foamyviral vectors restores the long-term repopulating activity of Fancc-/- stem cells,” Blood, vol. 112, no. 12, pp. 4458–4465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. D. N. Worsham, T. Schuesler, C. von Kalle, and D. Pan, “In vivo gene transfer into adult stem cells in unconditioned mice by in situ delivery of a lentiviral vector,” Molecular Therapy, vol. 14, no. 4, pp. 514–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. O. Habi, J. Girard, V. Bourdages, M. C. Delisle, and M. Carreau, “Correction of Fanconi anemia group C hematopoietic stem cells following intrafemoral gene transfer,” Anemia, vol. 2010, Article ID 947816, 13 pages, 2010. View at Publisher · View at Google Scholar
  162. C. Frecha, C. Costa, D. Nègre et al., “A novel lentiviral vector targets gene transfer into human hematopoietic stem cells in marrow from patients with bone marrow failure syndrome and in vivo in humanized mice,” Blood, vol. 119, no. 5, pp. 1139–1150, 2012. View at Publisher · View at Google Scholar · View at Scopus
  163. L. U. Mueller, M. D. Milsom, and D. A. Williams, “Insertional mutagenesis in hematopoietic cells: lessons learned from adverse events in clinical gene therapy trials,” in Insertional Mutagenesis Strategies in Cancer Genetics, A. J. Dupuy and D. A. Largaespada, Eds., Springer, New York, NY, USA, 2011. View at Google Scholar
  164. Z. Ivics and Z. Izsvak, “Nonviral gene delivery with the sleeping beauty transposon system,” Human Gene Therapy, vol. 22, pp. 1043–1051, 2011. View at Google Scholar
  165. D. Carroll, “Genome engineering with zinc-finger nucleases,” Genetics, vol. 188, pp. 773–782, 2011. View at Google Scholar
  166. A. Lombardo, P. Genovese, C. M. Beausejour et al., “Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery,” Nature Biotechnology, vol. 25, no. 11, pp. 1298–1306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. J. M. Liu, A. D. Auerbach, S. M. Anderson, S. W. Green, and N. S. Young, “A trial of recombinant human superoxide dismutase in patients with fanconi anaemia,” British Journal of Haematology, vol. 85, no. 2, pp. 406–408, 1993. View at Google Scholar · View at Scopus
  168. I. V. Rosado, F. Langevin, G. P. Crossan, M. Takata, and K. J. Patel, “Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway,” Nature Structural & Molecular Biology, vol. 18, pp. 1432–1434, 2011. View at Google Scholar
  169. J. Lin, D. Ziring, S. Desai et al., “TNFalpha blockade in human diseases: an overview of efficacy and safety,” Clinical Immunology, vol. 126, pp. 13–30, 2008. View at Google Scholar