Table of Contents Author Guidelines Submit a Manuscript
Active and Passive Electronic Components
Volume 2010, Article ID 268431, 11 pages
http://dx.doi.org/10.1155/2010/268431
Research Article

Taylor Expansion of Surface Potential in MOSFET: Application to Pao-Sah Integral

1LaMIPS, Laboratoire commun NXP-CRISMAT, UMR 6508 CNRS ENSICAEN, UCBN, 2, rue de la Girafe BP 5120, F-14079 Caen Cedex 5, France
2NXP Semiconductors 2, Esplanade Anton Philips Campus Effiscience, Colombelles, BP 20 000 14906 Caen Cedex 9, France

Received 16 October 2009; Revised 24 March 2010; Accepted 21 April 2010

Academic Editor: Ashok Goel

Copyright © 2010 Hugues Murray et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Lilienfeld, “Method and apparatus for controlling electric current,” US patent 1745175, January 1930.
  2. C. T. Sah, “Characteristics of the metal-oxide-semiconductor transistors,” IEEE Transactions on Electron Devices, vol. 11, no. 7, pp. 324–345, 1964. View at Google Scholar
  3. H. C. Pao and C. T. Sah, “Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors,” Solid State Electronics, vol. 9, no. 10, pp. 927–937, 1966. View at Google Scholar · View at Scopus
  4. R. F. Pierret and J. A. Shields, “Simplified long-channel MOSFET theory,” Solid State Electronics, vol. 26, no. 2, pp. 143–147, 1983. View at Google Scholar · View at Scopus
  5. M. Persi and G. Gildenblat, “Computationally efficient version of the Pao-Sah model with variable mobility,” Solid-State Electronics, vol. 38, no. 8, pp. 1461–1463, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. C. T. Sah, “A history of MOS transistor compact modeling,” in Proceedings of the Nanotechnology Conference (WCM '05), pp. 347–390, Anaheim, Calif, USA, May 2005.
  7. B. B. Jie and C.-T. Sah, “Physics-based exact analytical drain current equation and optimized compact model for long channel MOS transistors,” in Proceedings of the 7th International Conference on Solid-State and Integrated Circuits Technology, pp. 941–945, October 2004.
  8. J. Watts, C. McAndrew, C. Enz et al., “Advanced compact models for MOSFETs,” in Proceedings of the Nanotechnology Conference (WCM '05), pp. 3–12, Anaheim, Calif, USA, May 2005.
  9. J. J. Liou, A. Ortiz-Conde, and F. Garcia-Sanchez, Analysis and Design of Mosfets, Springer, New York, NY, USA, 1998.
  10. A. M. Anile, A. Marrocco, V. Romano, and J. M. Sellier, “Numerical simulation of 2D SiliconMESFET andMOSFET described by theMEP based energy-transport model with a mixed finite elements scheme,” Rapport de Recherche 5095, INRIA, January 2004. View at Google Scholar
  11. D. Vasileska and S. M. Goodnick, Computational Electronics, Morgan & Claypool, 2006.
  12. H. Murray, P. Martin, S. Bardy, and F. Murray, “Taylor expansions of band-bending in MOS capacitance: application to scanning capacitance microscopy,” Semiconductor Science and Technology, vol. 23, no. 3, Article ID 035016, 2008. View at Publisher · View at Google Scholar
  13. C. K. Kim and E. S. Yang, “On the validity of the gradual-channel approximation for field effect transistors,” Proceedings of the IEEE, vol. 58, no. 5, pp. 841–842, 1970. View at Google Scholar
  14. E. H. Nicollian and J. R. Brews, MOS Physics and Technology, John Wiley & Sons, Hoboken, NJ, USA, 2002.
  15. G. Goudet and C. Meuleau, Les Semiconducteurs, Eyrolles, Paris, France, 1958.
  16. W. Z. Shangguan, M. Saeys, and X. Zhou, “Surface-potential solutions to the Pao-Sah voltage equation,” Solid-State Electronics, vol. 50, no. 7-8, pp. 1320–1329, 2006. View at Publisher · View at Google Scholar
  17. J. He, W. Bian, and W. Bian, “An explicit current-voltage model for undoped double-gate MOSFETs based on accurate yet analytic approximation to the carrier concentration,” Solid-State Electronics, vol. 51, no. 1, pp. 179–185, 2007. View at Publisher · View at Google Scholar
  18. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Hoboken, NJ, USA, 3rd edition, 2007.
  19. R. C. Wrede and M. R. Spiegel, Schaum's Outline of Theory and Problems of Advanced Calculus, McGraw-Hill, New York, NY, USA, 2nd edition, 2002.
  20. K. Y. Lim and X. Zhou, “A physically-based semi-empirical effective mobility model for MOSFET compact I-V modeling,” Solid-State Electronics, vol. 45, no. 1, pp. 193–197, 2001. View at Publisher · View at Google Scholar
  21. C. Huang and G. S. Gildenblat, “Measurements and modeling of the n-channel MOSFET inversion layer mobility and device characteristics in the temperature range 60–300 K,” IEEE Transactions on Electron Devices, vol. 37, no. 5, pp. 1289–1300, 1990. View at Publisher · View at Google Scholar
  22. M. Krasnov, A. Kissélev, G. Makarenko, and E. Chikine, Mathématiques Supérieures, vol. 1, De Boeck Université, Paris, France, 1993.
  23. C. C. Enz, F. Krummenacher, and E. A. Vittoz, “An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications,” Analog Integrated Circuits and Signal Processing, vol. 8, no. 1, pp. 83–114, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Murray, “Analytic resolution of Poisson-Boltzmann equation in nanometric semiconductor junctions,” Solid-State Electronics, vol. 53, no. 1, pp. 107–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Koepf, “Taylor polynomials of implicit functions, of inverse functions, and of solutions of ordinary differential equations,” Complex Variables and Elliptic Equations, vol. 25, no. 1, pp. 23–33, 1994. View at Google Scholar