Table of Contents Author Guidelines Submit a Manuscript
Active and Passive Electronic Components
Volume 2010, Article ID 542406, 11 pages
http://dx.doi.org/10.1155/2010/542406
Research Article

Transition Frequencies and Negative Resistance of Inductively Terminated CMOS Buffer Cell and Application in MMW LC VCO

Center for Research in Analog & VLSI Microsystem dEsign (CRAVE), School of Engineering and Advanced Technology (SEAT), Massey University, Albany, Auckland 0632, New Zealand

Received 31 May 2010; Revised 18 August 2010; Accepted 6 October 2010

Academic Editor: M. A. Do

Copyright © 2010 S. M. Rezaul Hasan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper investigates the transition frequencies ( š¯‘“ t r a n s ) of an inductively terminated CMOS source follower buffer for negative resistance behavior at which the effective shunt resistance looking into the source of the buffer cell changes sign. Possible limiting frequencies of oscillation are determined based on resonators formed by a grounded gate inductor and a parasitic capacitance at the gate of the negative resistance buffer cell. The range of frequencies of oscillation of this negative resistance buffer cell for variations in the different circuit parameters/elements is explored. Following this, a millimeter wave (MMW) oscillator is simulated using the IBM 130 nm CMOS process technology which can operate at 70 GHz. High-frequency MOSFET model was used for these simulations. The cell had an extremely low power dissipation of under 3 mW. Extensive Monte Carlo simulations were carried out for manufacturability analysis considering up to 50% variation in process and geometrical parameters, supply voltage, and ambient temperature. Noise analysis and a simulated estimate of the phase noise in an MMW LC VCO application is also reported.