Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2011, Article ID 716456, 13 pages
http://dx.doi.org/10.1155/2011/716456
Research Article

Regulatory Multidimensionality of Gas Vesicle Biogenesis in Halobacterium salinarum NRC-1

Genome Center UC Davis, Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

Received 18 June 2011; Accepted 7 August 2011

Academic Editor: Jerry Eichler

Copyright © 2011 Andrew I. Yao and Marc T. Facciotti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Hechler and F. Pfeifer, “Anaerobiosis inhibits gas vesicle formation in halophilic Archaea,” Molecular Microbiology, vol. 71, no. 1, pp. 132–145, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. C. Englert, K. Kruger, S. Offner, and F. Pfeifer, “Three different but related gene clusters encoding gas vesicles in halophilic archaea,” Journal of Molecular Biology, vol. 227, no. 2, pp. 586–592, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. W. V. Ng, S. P. Kennedy, G. G. Mahairas et al., “Genome sequence of Halobacterium species NRC-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 22, pp. 12176–12181, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. L. J. Chu, M. C. Chen, J. Setter et al., “New structural proteins of Halobacterium salinarum gas vesicle revealed by comparative proteomics analysis,” Journal of Proteome Research, vol. 10, no. 3, pp. 1170–1178, 2011. View at Publisher · View at Google Scholar · View at PubMed
  5. S. DasSarma, P. Arora, F. Lin, E. Molinari, and L. R. S. Yin, “Wild-type gas vesicle formation requires at least ten genes in the gvp gene cluster of Halobacterium halobium plasmid pNRC100,” Journal of Bacteriology, vol. 176, no. 24, pp. 7646–7652, 1994. View at Google Scholar · View at Scopus
  6. S. Offner, A. Hofacker, G. Wanner, and F. Pfeifer, “Eight of fourteen gyp genes are sufficient for formation of gas vesicles in halophilic archaea,” Journal of Bacteriology, vol. 182, no. 15, pp. 4328–4336, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Beard, P. K. Hayes, and A. E. Walsby, “Growth competition between Halobacterium salinarium strain PHH1 and mutants affected in gas vesicle synthesis,” Microbiology, vol. 143, no. 2, pp. 467–473, 1997. View at Google Scholar · View at Scopus
  8. C. F. Yang and S. DasSarma, “Transcriptional induction of purple membrane and gas vesicle synthesis in the archaebacterium Halobacterium halobium is blocked by a DNA gyrase inhibitor,” Journal of Bacteriology, vol. 172, no. 7, pp. 4118–4121, 1990. View at Google Scholar · View at Scopus
  9. J. A. Müller and S. DasSarma, “Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors,” Journal of Bacteriology, vol. 187, no. 5, pp. 1659–1667, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. K. Schmid, D. J. Reiss, A. Kaur et al., “The anatomy of microbial cell state transitions in response to oxygen,” Genome Research, vol. 17, no. 10, pp. 1399–1413, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. R. F. Shand and M. C. Betlach, “Expression of the bop gene cluster of Halobacterium halobium is induced by low oxygen tension and by light,” Journal of Bacteriology, vol. 173, no. 15, pp. 4692–4699, 1991. View at Google Scholar · View at Scopus
  12. M. T. Facciotti, W. L. Pang, F. Y. Lo et al., “Large scale physiological readjustment during growth enables rapid, comprehensive and inexpensive systems analysis,” BMC Systems Biology, vol. 4, article 64, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. T. Hechler, M. Frech, and F. Pfeifer, “Glucose inhibits the formation of gas vesicles in Haloferax volcanii transformants,” Environmental Microbiology, vol. 10, no. 1, pp. 20–30, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. A. Kaur, P. T. Van, C. R. Busch et al., “Coordination of frontline defense mechanisms under severe oxidative stress,” Molecular Systems Biology, vol. 6, article 393, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. S. Offner, U. Ziese, G. Wanner, D. Typke, and F. Pfeifer, “Structural characteristics of halobacterial gas vesicles,” Microbiology, vol. 144, part 5, pp. 1331–1342, 1998. View at Google Scholar · View at Scopus
  16. A. E. Walsby, “Gas vesicles,” Microbiological Reviews, vol. 58, no. 1, pp. 94–144, 1994. View at Google Scholar · View at Scopus
  17. A. E. Walsby, “The pressure relationships of gas vacuoles,” Proceedings of the Royal Society of London. Series B, Biological Sciences, vol. 178, pp. 301–326, 1971. View at Google Scholar
  18. D. Oesterhelt and W. Stoeckenius, “Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane,” Methods in Enzymology, vol. 31, no. C, pp. 667–678, 1974. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Tummers III, “DataThief III. Shareware software DataThief III,” 2009, http://datathief.org/.
  20. M. D. Abràmoff, P. J. Magalhães, and S. J. Ram, “Image processing with imageJ,” Biophotonics International, vol. 11, no. 7, pp. 36–43, 2004. View at Google Scholar · View at Scopus
  21. G. Cohen-Bazire, R. Kunisawa, and N. Pfennig, “Comparative study of the structure of gas vacuoles,” Journal of Bacteriology, vol. 100, no. 2, pp. 1049–1061, 1969. View at Google Scholar · View at Scopus
  22. F. T. Robb, Halophiles, Cold Spring Harbor Laboratory Press, New York, NY, USA, 1995.
  23. F. Pfeifer, D. Gregor, A. Hofacker, P. Plößer, and P. Zimmermann, “Regulation of gas vesicle formation in halophilic archaea,” Journal of Molecular Microbiology and Biotechnology, vol. 4, no. 3, pp. 175–181, 2002. View at Google Scholar · View at Scopus
  24. T. E. Creighton, Proteins: Structures and Molecular Properties, W. H. Freeman, New York, NY, USA, 1993.
  25. A. E. Walsby and R. E. Armstrong, “Average thickness of the gas vesicle wall in Anabaena flos-aquae,” Journal of Molecular Biology, vol. 129, no. 2, pp. 279–285, 1979. View at Google Scholar
  26. R. D. Simon, “Acrylamide gel electrophoresis of hydrophobic proteins: gas vacuole protein,” Electrophoresis, vol. 1, pp. 172–176, 1980. View at Google Scholar
  27. B. Surek, B. Pillay, U. Rdest, K. Beyreuther, and W. Goebel, “Evidence for two different gas vesicle proteins and genes in Halobacterium halobium,” Journal of Bacteriology, vol. 170, no. 4, pp. 1746–1751, 1988. View at Google Scholar
  28. W. Stoeckenius and W. H. Kunau, “Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes,” Journal of Cell Biology, vol. 38, no. 2, pp. 337–357, 1968. View at Google Scholar · View at Scopus
  29. S. Dassarma, J. T. Halladay, J. G. Jones, J. W. Donovan, P. J. Giannasca, and N. T. de Marsac, “High-frequency mutations in a plasmid-encoded gas vesicle gene in Halobacterium halobium,” Proceedings of the National Academy of Sciences of USA, vol. 85, pp. 6861–6865, 1988. View at Google Scholar
  30. A. Hofacker, K. M. Schmitz, A. Cichonczyk, S. Sartorious-Neef, and F. Pfeifer, “GvpE- and GvpD-mediated transcription regulation of the p-gvp genes encoding gas vesicles in Halobacterium salinarum,” Microbiology, vol. 150, no. 6, pp. 1829–1838, 2004. View at Google Scholar · View at Scopus
  31. J. A. Coker and S. DasSarma, “Genetic and transcriptomic analysis of transcription factor genes in the model halophilic Archaeon: coordinate action of TbpD and TfbA,” BMC Genetics, vol. 8, article 61, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. S. Offner and F. Pfeifer, “Complementation studies with the gas vesicle-encoding p-vac region of Halobacterium salinarium PHH1 reveal a regulatory role for the p-gvpDE genes,” Molecular Microbiology, vol. 16, no. 1, pp. 9–19, 1995. View at Google Scholar · View at Scopus
  33. K. Teufel, A. Bleiholder, T. Griesbach, and F. Pfeifer, “Variations in the multiple tbp genes in different Halobacterium salinarum strains and their expression during growth,” Archives of Microbiology, vol. 190, no. 3, pp. 309–318, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. P. H. Viollier, K. T. Nguyen, W. Minas, M. Folcher, G. E. Dale, and C. J. Thompson, “Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor,” Journal of Bacteriology, vol. 183, no. 10, pp. 3193–3203, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. Banerjee, A. K. Nandyala, P. Raviprasad, N. Ahmed, and S. E. Hasnain, “Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase,” Journal of Bacteriology, vol. 189, no. 11, pp. 4046–4052, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. Y. Tang and J. R. Guest, “Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases,” Microbiology, vol. 145, part 11, pp. 3069–3079, 1999. View at Google Scholar · View at Scopus
  37. C. Alén and A. L. Sonenshein, “Bacillus subtilis aconitase is an RNA-binding protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 10412–10417, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. G. S. Shadel, “Mitochondrial DNA, aconitase ‘wraps’ it up,” Trends in Biochemical Sciences, vol. 30, no. 6, pp. 294–296, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. A. L. Bulteau, M. Ikeda-Saito, and L. I. Szweda, “Redox-dependent modulation of aconitase activity in intact mitochondria,” Biochemistry, vol. 42, no. 50, pp. 14846–14855, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. D. J. Haile, T. A. Rouault, C. K. Tang, J. Chin, J. B. Harford, and R. D. Klausner, “Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7536–7540, 1992. View at Google Scholar · View at Scopus
  41. M. Campillos, I. Cases, M. W. Hentze, and M. Sanchez, “SIREs: searching for iron-responsive elements,” Nucleic Acids Research, vol. 38, no. 2, pp. W360–W367, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. K. Teufel and F. Pfeifer, “Interaction of transcription activator GvpE with TATA-box-binding proteins of Halobacterium salinarum,” Archives of Microbiology, vol. 192, no. 2, pp. 143–149, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. M. T. Facciotti, D. J. Reiss, M. Pan et al., “General transcription factor specified global gene regulation in archaea,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 11, pp. 4630–4635, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. K. M. Campbell, R. T. Ranallo, L. A. Stargell, and K. J. Lumb, “Reevaluation of transcriptional regulation by TATA-binding protein oligomerization: predominance of monomers,” Biochemistry, vol. 39, no. 10, pp. 2633–2638, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Chitikila, K. L. Huisinga, J. D. Irvin, A. D. Basehoar, and B. F. Pugh, “Interplay of TBP inhibitors in global transcriptional control,” Molecular Cell, vol. 10, no. 4, pp. 871–882, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Kou and B. F. Pugh, “Engineering dimer-stabilizing mutations in the TATA-binding protein,” Journal of Biological Chemistry, vol. 279, no. 20, pp. 20966–20973, 2004. View at Publisher · View at Google Scholar · View at PubMed