Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2013, Article ID 289236, 16 pages
http://dx.doi.org/10.1155/2013/289236
Research Article

Molecular Characterization of Copper and Cadmium Resistance Determinants in the Biomining Thermoacidophilic Archaeon Sulfolobus metallicus

1Laboratory of Molecular Microbiology and Biotechnology, Department of Biology and Millennium Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, University of Chile, Santiago, Chile
2Department of Chemical Engineering, North Catholic University, Antofagasta, Chile

Received 5 November 2012; Accepted 4 January 2013

Academic Editor: Elisabetta Bini

Copyright © 2013 Alvaro Orell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Schippers, “Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification,” in Microbial Processing of Metal Sulfides, R. E. Donati and W. Sand, Eds., pp. 3–33, Elsevier, Berlin, Germany, 2007. View at Google Scholar
  2. H. R. Watling, “The bioleaching of sulphide minerals with emphasis on copper sulphides: a review,” Hydrometallurgy, vol. 84, no. 1-2, pp. 81–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. D. E. Rawlings, D. Dew, and C. Du Plessis, “Biomineralization of metal-containing ores and concentrates,” Trends in Biotechnology, vol. 21, no. 1, pp. 38–44, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Valenzuela, A. Chi, S. Beard et al., “Genomics, metagenomics and proteomics in biomining microorganisms,” Biotechnology Advances, vol. 24, no. 2, pp. 197–211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Jerez, “Bioleaching and biomining for the industrial recovery of metals,” in Comprehensive Biotechnology, M. Moo-Young, Ed., vol. 3, pp. 717–729, Elsevier, Amstaerdam, The Netherlands, 2nd edition, 2011. View at Google Scholar
  6. P. R. Norris and J. P. Owen, “Mineral sulphide oxidation by enrichment cultures of novel thermoacidophilic bacteria,” FEMS Microbiology Reviews, vol. 11, no. 1–3, pp. 51–56, 1993. View at Google Scholar · View at Scopus
  7. D. E. Rawlings and D. B. Johnson, “The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia,” Microbiology, vol. 153, no. 2, pp. 315–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. P. R. Norris, N. P. Burton, and N. A. M. Foulis, “Acidophiles in bioreactor mineral processing,” Extremophiles, vol. 4, no. 2, pp. 71–76, 2000. View at Google Scholar · View at Scopus
  9. M. R. Bruins, S. Kapil, and F. W. Oehme, “Microbial resistance to metals in the environment,” Ecotoxicology and Environmental Safety, vol. 45, no. 3, pp. 198–207, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. T. J. G. Ettema, M. A. Huynen, W. M. De Vos, and J. Van Der Oost, “TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance,” Trends in Biochemical Sciences, vol. 28, no. 4, pp. 170–173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Dopson, C. Baker-Austin, P. R. Koppineedi, and P. L. Bond, “Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms,” Microbiology, vol. 149, no. 8, pp. 1959–1970, 2003. View at Google Scholar · View at Scopus
  12. S. Franke and C. Rensing, “Acidophiles. Mechanisms to tolerate metal and acid toxicity,” in Physiology and Biochemistry of Extremophiles, C. Gerday and N. Glansdorff, Eds., pp. 271–278, ASM Press, Washington, DC, USA, 2007. View at Google Scholar
  13. C. A. Navarro, L. H. Orellana, C. Mauriaca, and C. A. Jerez, “Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper,” Applied and Environmental Microbiology, vol. 75, no. 19, pp. 6102–6109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Orell, C. A. Navarro, R. Arancibia, J. C. Mobarec, and C. A. Jerez, “Life in blue: copper resistance mechanisms of bacteria and Archaea used in industrial biomining of minerals,” Biotechnology Advances, vol. 28, no. 6, pp. 839–848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Orell, C. A. Navarro, M. Rivero, J. S. Aguilar, and C. A. Jerez, “Inorganic polyphosphates in extremophiles and their posible functions,” Extremophiles, vol. 16, no. 4, pp. 573–583, 2012. View at Google Scholar
  16. C. Baker-Austin, M. Dopson, M. Wexler et al., “Extreme arsenic resistance by the acidophilic archaeon “Ferroplasma acidarmanus” Fer1,” Extremophiles, vol. 11, no. 3, pp. 425–434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Pedone, S. Bartolucci, and G. Fiorentino, “Sensing and adapting to environmental stress: the archaeal tactic,” Frontiers in Bioscience, vol. 9, pp. 2909–2926, 2004. View at Google Scholar · View at Scopus
  18. C. Baker-Austin, M. Dopson, M. Wexler, R. G. Sawers, and P. L. Bond, “Molecular insight into extreme copper resistance in the extremophilic archaeon “Ferroplasma acidarmanus” Fer1,” Microbiology, vol. 151, no. 8, pp. 2637–2646, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. J. G. Ettema, A. B. Brinkman, P. P. Lamers, N. G. Kornet, W. M. de Vos, and J. van der Oost, “Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2,” Microbiology, vol. 152, no. 7, pp. 1969–1979, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. A. Villafane, Y. Voskoboynik, M. Cuebas, I. Ruhl, and E. Bini, “Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2,” Biochemical and Biophysical Research Communications, vol. 385, no. 1, pp. 67–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. K. S. Auernik, Y. Maezato, P. H. Blum, and R. M. Kelly, “The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism,” Applied and Environmental Microbiology, vol. 74, no. 3, pp. 682–692, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Maezato, T. Johnson, S. McCarthy, K. Dana, and P. Blum, “Metal resistance and lithoautotrophy in the extreme thermoacidophile Metalosphaera sedula,” Journal of Bacteriology, vol. 194, no. 24, pp. 6856–6863, 2012. View at Publisher · View at Google Scholar
  23. D. H. Nies, “Microbial heavy-metal resistance,” Applied Microbiology and Biotechnology, vol. 51, no. 6, pp. 730–750, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Vido, D. Spector, G. Lagniel, S. Lopez, M. B. Toledano, and J. Labarre, “A proteome analysis of the cadmium response in Saccharomyces cerevisiae,” The Journal of Biological Chemistry, vol. 276, no. 11, pp. 8469–8474, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Bertin and D. Averbeck, “Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review),” Biochimie, vol. 88, no. 11, pp. 1549–1559, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. H. Joe, S. W. Jung, S. H. Im et al., “Genome-wide response of Deinococcus radiodurans on cadmium toxicity,” Journal of Microbiology and Biotechnology, vol. 21, no. 4, pp. 438–447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Lagorce, A. Fourçans, M. Dutertre, B. Bouyssiere, Y. Zivanovic, and F. Confalonieri, “Genome-wide transcriptional response of the archeon Thermococcus gammatolerans to cadmium,” PLOS ONE, vol. 7, no. 7, Article ID e41935, 2012. View at Publisher · View at Google Scholar
  28. A. Kornberg, N. N. Rao, and D. Ault-Riché, “Inorganic polyphosphate: a molecule of many functions,” Annual Review of Biochemistry, vol. 68, pp. 89–125, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. J. D. Keasling, “Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate,” Annals of the New York Academy of Sciences, vol. 829, pp. 242–249, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Remonsellez, A. Orell, and C. A. Jerez, “Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism,” Microbiology, vol. 152, no. 1, pp. 59–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Hatzimanikatis, L. H. Choe, and K. H. Lee, “Proteomics: theoretical and experimental considerations,” Biotechnology Progress, vol. 15, no. 3, pp. 312–318, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. L. H. Choe and K. H. Lee, “A comparison of three commercially available isoelectric focusing units for proteome analysis: the Multiphor, the IPGphor and the Protean IEF cell,” Electrophoresis, vol. 21, no. 5, pp. 993–1000, 2000. View at Google Scholar
  33. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, “Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels,” Analytical Chemistry, vol. 68, no. 5, pp. 850–858, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Giavalisco, E. Nordhoff, T. Kreitler et al., “Proteome analysis of Arabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry,” Proteomics, vol. 5, no. 7, pp. 1902–1913, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. T. M. Rose, E. R. Schultz, J. G. Henikoff, S. Pietrokovski, C. M. McCallum, and S. Henikoff, “Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences,” Nucleic Acids Research, vol. 26, no. 7, pp. 1628–1635, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. T. M. Rose, J. G. Henikoff, and S. Henikoff, “CODEHOP (Consensus-Degenerate Hybrid Oligonucleotide Primer) PCR primer design,” Nucleic Acids Research, vol. 31, no. 13, pp. 3763–3766, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. J. P. Acevedo, F. Reyes, L. P. Parra, O. Salazar, B. A. Andrews, and J. A. Asenjo, “Cloning of complete genes for novel hydrolytic enzymes from Antarctic sea water bacteria by use of an improved genome walking technique,” Journal of Biotechnology, vol. 133, no. 3, pp. 277–286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Bathe and P. R. Norris, “Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus,” Applied and Environmental Microbiology, vol. 73, no. 8, pp. 2491–2497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, New York, NY, USA, 1989.
  41. K. W. Miller, S. Sass Risanico, and J. B. Risatti, “Differential tolerance of Sulfolobus strains to transition metals,” FEMS Microbiology Letters, vol. 93, no. 1, pp. 69–73, 1992. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Huber, C. Spinnler, A. Gambacorta, and K. O. Stetter, “Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria,” Systematic and Applied Microbiology, vol. 12, pp. 38–47, 1989. View at Google Scholar
  43. J. Llanos, C. Capasso, E. Parisi, D. Prieur, and C. Jeanthon, “Susceptibility to heavy metals and cadmium accumulation in aerobic and anaerobic thermophilic microorganisms isolated from deep-sea hydrothermal vents,” Current Microbiology, vol. 41, no. 3, pp. 201–205, 2000. View at Google Scholar · View at Scopus
  44. A. Kaur, M. Pan, M. Meislin, M. T. Facciotti, R. El-Gewely, and N. S. Baliga, “A systems view of haloarchaeal strategies to withstand stress from transition metals,” Genome Research, vol. 16, no. 7, pp. 841–854, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Solioz and J. V. Stoyanov, “Copper homeostasis in Enterococcus hirae,” FEMS Microbiology Reviews, vol. 27, no. 2-3, pp. 183–195, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Sitthisak, K. Howieson, C. Amezola, and R. K. Jayaswal, “Characterization of a multicopper oxidase gene from Staphylococcus aureus,” Applied and Environmental Microbiology, vol. 71, no. 9, pp. 5650–5653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Rodríguez-Montelongo, S. I. Volentini, R. N. Farías, E. M. Massa, and V. A. Rapisarda, “The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide,” Archives of Biochemistry and Biophysics, vol. 451, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Williams, T. M. Lowe, J. Savas, and J. DiRuggiero, “Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation,” Extremophiles, vol. 11, no. 1, pp. 19–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. L. M. Gaetke and C. K. Chow, “Copper toxicity, oxidative stress, and antioxidant nutrients,” Toxicology, vol. 189, no. 1-2, pp. 147–163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. M. J. Davies, “The oxidative environment and protein damage,” Biochimica et Biophysica Acta, vol. 1703, no. 2, pp. 93–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. J. R. Thompson, J. K. Bell, J. Bratt, G. A. Grant, and L. J. Banaszak, “Vmax regulation through domain and subunit changes. The active form of phosphoglycerate dehydrogenase,” Biochemistry, vol. 44, no. 15, pp. 5763–5773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Consalvi, R. Chiaraluce, L. Politi, A. Gambacorta, M. De Rosa, and R. Scandurra, “Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus,” European Journal of Biochemistry, vol. 196, no. 2, pp. 459–467, 1991. View at Google Scholar · View at Scopus
  53. A. J. L. Macario, M. Lange, B. K. Ahring, and E. Conway De Macario, “Stress genes and proteins in the archaea,” Microbiology and Molecular Biology Reviews, vol. 63, no. 4, pp. 923–967, 1999. View at Google Scholar · View at Scopus
  54. J. A. Maupin-Furlow, M. A. Gil, M. A. Humbard et al., “Archaeal proteasomes and other regulatory proteases,” Current Opinion in Microbiology, vol. 8, no. 6, pp. 720–728, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Sun, F. Beck, R. Wilhelm Knispel et al., “Proteomics analysis of Thermoplasma acidophilum with a focus on protein complexes,” Molecular and Cellular Proteomics, vol. 6, no. 3, pp. 492–502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. L. S. Madding, J. K. Michel, K. R. Shockley et al., “Role of the β1 subunit in the function and stability of the 20S proteasome in the hyperthermophilic Archaeon Pyrococcus furiosus,” Journal of Bacteriology, vol. 189, no. 2, pp. 583–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Shibata, Y. Bessho, A. Shinkai et al., “Crystal structure and RNA-binding analysis of the archaeal transcription factor NusA,” Biochemical and Biophysical Research Communications, vol. 355, no. 1, pp. 122–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. W. Bae, B. Xia, M. Inouye, and K. Severinov, “Escherichia coli CspA-family RNA chaperones are transcription antiterminators,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 14, pp. 7784–7789, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. R. J. Ram, N. C. VerBerkmoes, M. P. Thelen et al., “Microbiology: community proteomics of a natural microbial biofilm,” Science, vol. 308, no. 5730, pp. 1915–1920, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Noël-Georis, T. Vallaeys, R. Chauvaux et al., “Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response,” Proteomics, vol. 4, no. 1, pp. 151–179, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. M. T. M. Novo, A. C. Da Silva, R. Moreto et al., “Thiobacillus ferrooxidans response to copper and other heavy metals: growth, protein synthesis and protein phosphorylation,” Antonie van Leeuwenhoek, vol. 77, no. 2, pp. 187–195, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. Q. She, R. K. Singh, F. Confalonieri et al., “The complete genome of the crenarchaeon Sulfolobus solfataricus P2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 14, pp. 7835–7840, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. R. P. Anderson and J. R. Roth, “Tandem genetic duplications in phage and bacteria,” Annual Review of Microbiology, vol. 31, pp. 473–505, 1977. View at Google Scholar · View at Scopus
  64. D. Gevers, K. Vandepoele, C. Simillion, and Y. Van De Peer, “Gene duplication and biased functional retention of paralogs in bacterial genomes,” Trends in Microbiology, vol. 12, no. 4, pp. 148–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. A. B. Reams and E. L. Neidle, “Selection for gene clustering by tandem duplication,” Annual Review of Microbiology, vol. 58, pp. 119–142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. L. H. Orellana and C. A. Jerez, “A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage,” Applied Microbiology and Biotechnology, vol. 92, no. 4, pp. 761–767, 2011. View at Google Scholar
  67. A. B. Brinkman, T. J. G. Ettema, W. M. de Vos, and J. van der Oost, “The Lrp family of transcriptional regulators,” Molecular Microbiology, vol. 48, no. 2, pp. 287–294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Vollmecke, S. L. Drees, J. Reimann, S. V. Albers, and M. Lubben, “The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus,” Microbiology, vol. 158, no. 6, pp. 1622–1633, 2012. View at Google Scholar
  69. A. Villafane, Y. Voskoboynik, I. Ruhl et al., “CopR of Sulfolobus solfataricus represents a novel class of archaeal-specific copper-responsive activators of transcription,” Microbiology, vol. 157, no. 10, pp. 2808–2817, 2011. View at Publisher · View at Google Scholar