Table of Contents Author Guidelines Submit a Manuscript
Advances in Tribology
Volume 2011, Article ID 516202, 11 pages
http://dx.doi.org/10.1155/2011/516202
Research Article

The Effects of Wear upon the Axial Profile of a Grinding Wheel in the Construction of Innovative Grinding Wheels for Internal Cylindrical Grinding

Department of Production Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland

Received 16 September 2010; Revised 22 February 2011; Accepted 6 June 2011

Academic Editor: J. Paulo Davim

Copyright © 2011 K. Nadolny and B. Słowiński. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. B. Rowe, Principles of Modern Grinding Technology, William Andrew Applied Science Publishers, Burligton, Vt, USA, 2009.
  2. I. D. Marinescu, W. B. Rowe, B. Dimitrov, and I. Inasaki, Tribology of Abrasive Machining Processes, William Andrew, Norwich, UK, 2004.
  3. M. J. Jackson, “Microscale wear of vitrified abrasive materials,” Journal of Materials Science, vol. 39, no. 6, pp. 2131–2143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Webster and M. Tricard, “Innovations in abrasive products for precision grinding,” Annals of the Cooperative Institutional Research Program, vol. 53, no. 2, pp. 597–617, 2004. View at Google Scholar · View at Scopus
  5. H. K. Tönshoff, B. Karpuschewski, and T. Mandrysch, “Grinding process achievements and their consequences on machine tools challenges and opportunities,” Annals of the Cooperative Institutional Research Program, vol. 47, no. 2, pp. 651–668, 1998. View at Google Scholar · View at Scopus
  6. J. Plichta, Foundations of Grinding Process Using Grinding Wheels With Microcrystalline Grains of the Cubic Boron Nitride With Vitrified Bond, Monographs of Mechanical Department no. 58, University's Publishers of Koszalin University of Technology, Koszalin, Poland, 1996.
  7. F. Klocke, G. Hegener, and L. Deacu, “Hochleistungs-aussenrund-formschleifen. Innovatives fertigungsverfahren vereint hohe flexibilität und produktivität,” Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 91, no. 4, pp. 164–167, 1996. View at Google Scholar
  8. F. Klocke and G. Hegener, “Schnell, gut und flexibel: hochleistungs-aussenrund-formschleifen,” Individual Differences Research, vol. 33, no. 2, pp. 153–160, 1999. View at Google Scholar
  9. P. Lüetjens and H. Mushardt, “Grinding out hardened parts,” American Machinist, vol. 148, no. 3, pp. 52–59, 2004. View at Google Scholar · View at Scopus
  10. P. Lütjens, “Hard turning or grinding—which is the more economical alternative?” Industrial Diamond Review, vol. 61, no. 588, pp. 22–26, 2001. View at Google Scholar · View at Scopus
  11. K. Weinert, M. Finke, D. Kötter et al., “Wirtschaftliche alternative zum hartdrehen. Innenrund-schälschleifen steigert flexibilität beim schleifen von futterteilen,” Maschinenmarkt, vol. 109, no. 48, pp. 44–47, 2003. View at Google Scholar
  12. E. Junker, Verfahren und Vorrichtung zum Hochgeschwindigkeits-Profilschleifen von Rotations-Symmetrischen Werkstücken, Europäisches Patent, Nr. 0176654, 1985.
  13. F. Klocke and C. Bücker, “Quickpoint-Schleifen: baustein einer flexiblen produktion. Komplettbearbeiten in nur einer aufspannung,” Industrie-Anzeiger, vol. 118, no. 43-44, pp. 48–49, 1996. View at Google Scholar
  14. K. Mücke, “Quickpoint-Schleifmaschine mit wendbarer Spindel. Umspannen des Werkstücks erübrigt sich,” Industrie-Anzeiger, vol. 122, no. 42-43, p. 51, 2000. View at Google Scholar
  15. M. Excell, “Grinding process creeps forward,” Metalworking Production, vol. 139, no. 10, pp. 67–70, 1995. View at Google Scholar · View at Scopus
  16. C. Guo, M. Campomanes, D. McIntosh, C. Becze, and S. Malkin, “Model-based monitoring and control of continuous dress creep-feed form grinding,” Annals of the Cooperative Institutional Research Program, vol. 53, no. 1, pp. 263–266, 2004. View at Google Scholar · View at Scopus
  17. S. Salmon, “Creep-feed grinding is surprisingly versatile,” Manufacturing Engineering, vol. 133, no. 5, pp. 59–64, 2004. View at Google Scholar · View at Scopus
  18. Sunarto and Y. Ichida, “Creep feed profile grinding of Ni-based superalloys with ultrafine-polycrystalline cBN abrasive grits,” Precision Engineering, vol. 25, no. 4, pp. 274–283, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Nakajima, K. Okamura, and Y. Uno, “Traverse grinding techniques for improving both productivity and surface finish,” in Proceedings of the International Grinding Conference, Fontana, Calif, USA, Mr 84-534, August 1984.
  20. D. Herman, J. Plichta, and K. Nadolny, “New ceramic abrasive tools for rough and finishing grinding in one pass,” Materials Science Forum, vol. 526, pp. 163–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Słowiński and K. Nadolny, “Effective manufacturing method for automated inside diameter grinding,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 1, no. 4, pp. 472–480, 2007. View at Google Scholar
  22. K. Nadolny, J. Plichta, D. Herman, and B. Słowiński, “Single-pass grinding—an effective manufacturing method for finishing,” in Proceedings of the 19th International Conference on Systems Engineering (ICSEng 2008), pp. 236–241, Las Vegas, Nev, USA, August 2008. View at Publisher · View at Google Scholar
  23. K. Nadolny and J. Plichta, Single-Pass Internal Grinding Using Grinding Wheels with Zone-Diversified Structure, University’s Publishers of Koszalin University of Technology, Koszalin, Poland, 2008.
  24. D. Herman and J. Markul, “Influence of microstructures of binder and abrasive grain on selected operational properties of ceramic grinding wheels made of alumina,” International Journal of Machine Tools and Manufacture, vol. 44, no. 5, pp. 511–522, 2004. View at Publisher · View at Google Scholar · View at Scopus