Table of Contents Author Guidelines Submit a Manuscript
Advances in Tribology
Volume 2014, Article ID 451387, 13 pages
http://dx.doi.org/10.1155/2014/451387
Research Article

Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb Alloys for Total Hip Prosthesis

1Surface Engineering and Tribology Group, Laboratory of Metallurgy and Engineering Materials, BADJI Mokhtar-University, P.O. Box 12, 23000 Annaba, Algeria
2Laboratory of MSMP, Arts et Metiers ParisTech, 8 Louis XIV Street, 59046 Lille Cedex, France

Received 11 December 2013; Revised 6 March 2014; Accepted 7 March 2014; Published 21 July 2014

Academic Editor: Huseyin Çimenoǧlu

Copyright © 2014 Mamoun Fellah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z.-B. Cai, G.-A. Zhang, Y.-K. Zhu, M.-X. Shen, L.-P. Wang, and M.-H. Zhu, “Torsional fretting wear of a biomedical Ti6Al7Nb alloy for nitrogen ion implantation in bovine serum,” Tribology International, vol. 59, pp. 312–320, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Masahashi, Y. Mizukoshi, S. Semboshi, K. Ohmura, and S. Hanada, “Photo-induced properties of anodic oxide films on Ti6Al4V,” Thin Solid Films, vol. 520, no. 15, pp. 4956–4964, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Cheng, J. Yang, X. Zhang et al., “High temperature tribological behavior of a Ti-46Al-2Cr-2Nb intermetallics,” Intermetallics, vol. 31, pp. 120–126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Bolzoni, E. M. Ruiz-Navas, E. Neubauer, and E. Gordo, “Mechanical properties and microstructural evolution of vacuum hot-pressed titanium and Ti-6Al-7Nb alloy,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 9, pp. 91–99, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Ida, Y. Tani, S. Tsutsumi et al., “Clinical application of pure titanium crowns,” Dental Materials Journal, vol. 4, no. 2, pp. 191–195, 1985. View at Google Scholar · View at Scopus
  6. B. Bergman, C. Bessing, G. Ericson, P. Lundquist, H. Nilson, and M. Andersson, “A 2-year follow-up study of titanium crowns,” Acta Odontologica Scandinavica, vol. 48, no. 2, pp. 113–117, 1990. View at Google Scholar · View at Scopus
  7. T. Kawazoe and K. Suese, “Clinical application of titanium crowns,” Journal of Medical and Dental Sciences, vol. 30, no. 3, pp. 317–328, 1989. View at Google Scholar
  8. A. Kuroiwa and Y. Igarashi, “Application of pure titanium to metal framework,” The Journal of the Japan Prosthodontic Society, vol. 42, pp. 547–558, 1998. View at Google Scholar
  9. M. A. Khan, R. L. Williams, and D. F. Williams, “In-vitro corrosion and wear of titanium alloys in the biological environment,” Biomaterials, vol. 17, no. 22, pp. 2117–2126, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Guitar, G. Vegan, and M. I. Luppo, “Microstructure and tensile properties after thermo hydrogen processing of Ti-6Al-4V,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 2, no. 2, pp. 156–163, 2009. View at Publisher · View at Google Scholar
  11. C. R. Ramos-Saenz, P. A. Sundaram, and N. Diffoot-Carlo, “Tribological properties of Ti-based alloys in a simulated bone-implant interface with Ringer's solution at fretting contacts,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 3, no. 8, pp. 549–558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. C. Browne, “Vanadium poisoning from gas turbines,” The British Journal of Industrial Medicine, vol. 12, no. 1, pp. 57–59, 1955. View at Google Scholar · View at Scopus
  13. S. G. Sjoberg, “Vanadium dust, chronic bronchitis and possible risk of emphysema: a follow-up investigation of workers at a vanadium factory,” Acta Medica Scandinavica, vol. 154, pp. 381–386, 1956. View at Google Scholar
  14. G. B. van der Voet, E. Marani, S. Tio, and F. A. de Wolff, “Aluminium neurotoxicity,” in Histo- and Cyto-Chemistry as a Tool in Environmental Toxicology, W. Graumann and J. Drukker, Eds., pp. 235–242, Fisher, Stuttgart, Germany, 1991. View at Google Scholar
  15. D. R. C. Mc Lachlan, G. Farnees, and I. T. Galin, Biological Aspects of Metals and Metal Related Diseases, Ravan Press, New York, NY, USA, 1983.
  16. D. Scharnweber, “Degradation (in vitro-in vivo corrosion),” in Metals as Biomaterials, J. A. Helsen and H. J. Breme, Eds., pp. 101–151, John Wiley & Sons, London, UK, 1998. View at Google Scholar
  17. M. F. Lopez, L. Soriano, F. J. Palomares et al., “Soft x-ray absorption spectroscopy study of passive and oxide layers of titanium alloys,” Surface and Interface Analysis, vol. 33, pp. 570–579, 2002. View at Google Scholar
  18. C. Morant, M. F. López, A. Gutiérrez, and J. A. Jiménez, “AFM and SEM characterization of non-toxic vanadium-free Ti alloys used as biomaterials,” Applied Surface Science, vol. 220, no. 1–4, pp. 79–87, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Fellah, O. Assala, M. Labaïz, L. Dekhil, and A. Iost, “Friction and wear behavior of Ti-6Al-7Nb biomaterial alloy,” Journal of Biomaterials & Nanobiotechnology, vol. 4, no. 4, pp. 374–384, 2013. View at Google Scholar
  20. M. F. Semlitsch, H. Weber, R. M. Streicher, and R. Schön, “Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy,” Biomaterials, vol. 13, no. 11, pp. 781–788, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Kobayashi, T. J. Wang, H. Doi, T. Yoneyama, and H. Hamanaka, “Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings,” Journal of Materials Science: Materials in Medicine, vol. 9, no. 10, pp. 567–574, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Confortoa, B.-O. Aronssonb, A. Salitoc, C. Crestoud, and D. Caillard, “Rough surfaces of titanium and titanium alloys for implants and prostheses,” Materials Science and Engineering C, vol. 24, no. 5, pp. 611–618, 2004. View at Publisher · View at Google Scholar
  23. Norme Internationale, “Implants chirurgicaux: prothèses partielles et totales de l’articulation de la hanche—Partie 2: surfaces articulaires constituées de matériaux métalliques, céramiques et plastiques,” ISO 7206-2:1996, 1996. View at Google Scholar
  24. J. F. Archard, “Contact and rubbing of flat surfaces,” Journal of Applied Physics, vol. 24, no. 8, pp. 981–988, 1953. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Fellah, M. Labaïz, O. Assala, and A. Iost, “Tribological behavior of friction couple: metal/ceramic (used for head of total hip replacement),” in Advances in Bioceramics and Porous Ceramics VI, pp. 45–57, 2014. View at Publisher · View at Google Scholar
  26. L. Avril, Elaboration de revêtements sur acier inoxydable simulation de la fusion par irradiation laser caractérisation structurale, mécanique et tribologique [thèse], Ecole Nationale Superieure D’arts et Metiers, 2003.
  27. T. Yoneyama, H. Doi, E. Kobayashi, T. Nakano, and H. Hamanaka, “Deformation property of titanium and dental alloys in an indentation test,” Dentistry in Japan, vol. 33, pp. 92–96, 1997. View at Google Scholar
  28. A. G. Atkins and D. Tabor, “Plastic indentation in metals with cones,” Journal of the Mechanics and Physics of Solids, vol. 13, no. 3, pp. 149–164, 1965. View at Google Scholar · View at Scopus
  29. G. Sundararajan and Y. Tirupataiah, “The hardness-flow stress correlation in metallic materials,” Bulletin of Materials Science, vol. 17, no. 6, pp. 747–770, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. R. A. Buchanan, E. D. Rigney Jr., and J. M. Williams, “Wear-accelerated corrosion of Ti-6Al-4V and nitrogen-ion-implanted Ti-6Al-4V: mechanisms and influence of fixed-stress magnitude,” Journal of Biomedical Materials Research, vol. 21, pp. 367–377, 1987. View at Google Scholar
  31. A. U. J. Yap, L. F. K. L. Ong, S. H. Teoh, and G. W. Hastings, “Comparative wear ranking of dental restoratives with the BIOMAT wear simulator,” Journal of Oral Rehabilitation, vol. 26, no. 3, pp. 228–235, 1999. View at Google Scholar · View at Scopus
  32. H. Doi, T. Yoneyama, E. Kobayashi, and H. Hamanaka, “Mechanical properties and corrosion resistance of Ti-5Al-13Ta alloy castings,” The Journal of the Japanese Society for Dental Materials and Devices, vol. 17, pp. 247–245, 1998. View at Google Scholar
  33. D. Iijima, T. Yoneyama, H. Doi, H. Hamanaka, and N. Kurosaki, “Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses,” Biomaterials, vol. 24, no. 8, pp. 1519–1524, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Straffelini and A. Molinari, “Dry sliding wear of Ti-6Al-4V alloy as influenced by the counterface and sliding conditions,” Wear, vol. 236, no. 1-2, pp. 328–338, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. N. P. Suh, “Update on the delamination theory of wear,” in Fundamentals of Friction and Wear of Materials, D. A. Rigney, Ed., p. 43, ASM, Materials Park, Ohio, USA, 1980. View at Google Scholar
  36. H. Dong and T. Bell, “Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment,” Wear, vol. 238, no. 2, pp. 131–137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Manivasagam, U. K. Mudali, R. Asokamani, and B. Raj, “Corrosion and microstructural aspects of titanium and its alloys as orthopaedic devices,” Corrosion Reviews, vol. 21, no. 2-3, pp. 125–159, 2003. View at Google Scholar · View at Scopus
  38. M. Fellah, M. Labaïz, O. Assala, A. Iost, and L. Dekhil, “Tribological behaviour of AISI 316L stainless steel for biomedical applications,” Tribology—Materials, Surfaces and Interfaces, vol. 7, no. 3, pp. 135–149, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Cvijovic-Alagic, Z. Cvijovic, S. Mitrovic, V. Panic, and M. Rakin, “Wear and corrosion behavior of Ti-13Nb-13Zr and Ti-6Al-4V alloys in simulated physiological solution,” Corrosion Science, vol. 53, no. 2, pp. 796–808, 2011. View at Publisher · View at Google Scholar