Table of Contents Author Guidelines Submit a Manuscript
Advances in Tribology
Volume 2018, Article ID 9480636, 8 pages
https://doi.org/10.1155/2018/9480636
Research Article

Recirculation Flow and Pressure Distributions in a Rayleigh Step Bearing

College of Mechanical Engineering and Applied Electronics Technology & Institute for Advanced Mechanics in Engineering, Beijing University of Technology, Beijing 100124, China

Correspondence should be addressed to Zhao-Miao Liu; nc.ude.tujb@mzl

Received 26 January 2018; Revised 16 April 2018; Accepted 26 April 2018; Published 21 June 2018

Academic Editor: Enrico Ciulli

Copyright © 2018 Feng Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Flow characteristics in the Rayleigh step slider bearing with infinite width have been studied using both analytical and numerical methods. The conservation equations of mass and momentum were solved utilizing a finite volume approach and the whole flow field was simulated. More detailed information about the flow patterns and pressure distributions neglected by the Reynolds lubrication equation has been obtained, such as jumping phenomenon around a Rayleigh step, vortex structure, and shear stress distribution. The pressure distribution of the Rayleigh step bearing with optimum geometry has been numerically simulated and the results obtained agreed with the analytical solution of the classical Reynolds lubrication equation. The simulation results show that the maximum pressure of the flow field is at the step tip not on the lower surface and the increment of the strain rate from Navier-Stokes equation is approximately 49 percent greater than that from Reynolds theory at the step tip. It is also shown that the position of the maximum pressure of the lower surface is a little less than the length of the first region. These results neglected by the Reynolds lubrication equation are important for designing a bearing.