Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2017, Article ID 6398167, 16 pages
https://doi.org/10.1155/2017/6398167
Research Article

Bioactive Potential of 3D-Printed Oleo-Gum-Resin Disks: B. papyrifera, C. myrrha, and S. benzoin Loading Nanooxides—TiO2, P25, Cu2O, and MoO3

1Federal University of Technology-Paraná, 84016-210 Ponta Grossa, PR, Brazil
2Department of Production Engineering, Federal University of Technology-Paraná, 84016-210 Ponta Grossa, PR, Brazil
3Department of Materials Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
4Department of Earth and Exact Sciences, Federal University of São Paulo, 89972-270 São Paulo, SP, Brazil

Correspondence should be addressed to Diogo José Horst; moc.liamg@tsrohogoid

Received 1 March 2017; Accepted 20 April 2017; Published 25 July 2017

Academic Editor: Francesco P. Fanizzi

Copyright © 2017 Diogo José Horst et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This experimental study investigates the bioactive potential of filaments produced via hot melt extrusion (HME) and intended for fused deposition modeling (FDM) 3D printing purposes. The oleo-gum-resins from benzoin, myrrha, and olibanum in pure state and also charged with 10% of metal oxide nanoparticles, TiO2, P25, Cu2O, and MoO3, were characterized by ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray microanalysis (EDXMA), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Disks were 3D-printed into model geometries (10 × 5 mm) and the disk-diffusion methodology was used for the evaluation of antimicrobial and antifungal activity of materials in study against the clinical isolates: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Due to their intrinsic properties, disks containing resins in pure state mostly prevent surface-associated growth; meanwhile, disks loaded with 10% oxides prevent planktonic growth of microorganisms in the susceptibility assay. The microscopy analysis showed that part of nanoparticles was encapsulated by the biopolymeric matrix of resins, in most cases remaining disorderly dispersed over the surface of resins. Thermal analysis shows that plant resins have peculiar characteristics, with a thermal behavior similar to commercial available semicrystalline polymers, although their structure consists of a mix of organic compounds.

1. Introduction

Infections caused by pathogenic microorganisms are of great concern in many fields [1]. Hospital-acquired infections are one of the major problems increasing mortality and morbidity. Microbial contamination may occur from various sources and invasive interventions [2]. Staphylococcus aureus is a Gram-positive major human pathogen that causes skin and soft-tissue infections, life-threatening infections such as pneumonia and sepsis, and toxinoses including toxic shock syndrome [3]. Pseudomonas aeruginosa is a Gram-negative bacillus that is rapidly becoming one of the major causes of opportunistic and nosocomial infections which have become a worldwide problem [4]. Escherichia coli is a Gram-negative pathogen which has been regarded as an important indicator bacterium; it causes severe diseases, such as hemolytic uremic syndrome (HUS), hemorrhagic colitis [5], and thrombotic thrombocytopenic purpura which can be fatal in some cases [6, 7]. Candida albicans is renowned as the leading fungal pathogen of oral candidosis, which manifests in a variety of clinical guises ranging from common denture associated infections in otherwise healthy individuals to systemic infections in human immunodeficiency virus disease [8, 9].

Although bacteria have shown the ability to acquire resistance to many antibiotics, however, in nature, there are several examples of antibiotics to which resistance has not yet developed [10, 11]. The history of medicine and pharmacy is well known for using plant oleo-gum-resins and extracts in curing diseases; these are known to have analgesic, antioxidant, antifungal, antiseptic, antibacterial, astringent, sedative, and stimulant therapeutic properties, among others [1221]. The bioactivity of oils and extracts obtained species Commiphora myrrha, Styrax benzoin, and Boswellia papyrifera has been investigated by several researches [2231]; these aromatic resins basically consist of monoterpenes (C10H16), triterpenes (C30H48), and sesquiterpenes (C15H24) with unique combinations, besides benzoic, myrrholic, and boswellic acids, respectively [3237]; the demonstration of the presence of secondary metabolites in medicinal plants oils, extracts, and resins provides a scientific validation for the popular use of these plants [3842].

Besides that, a greener approach for the biosynthesis of colloidal metal nanoparticles and dispersion/encapsulation of drugs using natural oleo-gum-resins has been suggested as being effective and more environmental friendly [4349]. Moreover, the development of multifunctional nanocomposite materials with enhanced mechanical and antimicrobial properties has been studied [5052]. Indeed, nanoparticles (NPs) are widely used in the field of healthcare, presenting numerous advantages in medical and biotechnological applications [53, 54] and increasingly attracting researchers due to their unique properties, such as submicrometer size (1–100 nm), large surface-to-volume ratio, and advanced reactivity [55, 56].

It is imperative to improve the applicability of 3D printing for pharmaceutical purposes by searching novel materials. The investigation of different physicochemical properties and adequate processing parameters of such materials is important for successful additive manufacturing of personalized geometries [57]. In the last years, the use of 3D printing for the development of drug delivery systems, medical devices, bone tissue engineering, and antimicrobial materials has shown promising results with a large possibility of applications [5861]. Beyond that, the use of hot melt extrusion (HME) in the fabrication of novel antimicrobial filaments for pharmaceutical application has steadily increased [6267]. Nature can combine brittle minerals and organic molecules into hybrid composites that are highly organized to achieve exceptional properties [68, 69]; organic-inorganic hybrid nanostructures and materials on their basis are promising class of multifunctional advanced materials [70, 71]. Within this context, the purpose of this study was to evaluate the potential of hybrid engineered materials intended for fused deposition modeling (FDM) 3D printing, testing its bioactivity against clinical pathogenic organisms including Gram-positive, Gram-negative bacteria, and fungus.

2. Materials and Methods

2.1. Materials and Reagents

Oleo-gum-resins from benzoin (Styrax benzoin) harvested in Singapore, olibanum (Boswellia papyrifera) originally from Ethiopia, and myrrh (Commiphora myrrha) from Somalia were purchased from Mountain Rose Herbs (Eugene, Oregon, USA). Titanium dioxide (TiO2), anatase (P25), molybdenum trioxide (MoO3), and copper I (Cu2O) oxide were purchased from Plasmachem (GmbH, Germany); the nanoparticles have sizes between 10 nm to 1 nm. Prior to testing, all materials were sterilized using UV radiations. Clinical isolates of Staphylococcus aureus ATCC 6538; Pseudomonas aeruginosa ATCC 9027; Escherichia coli ATCC 8739; and Candida albicans ATCC 2091 were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). Mueller-Hinton agar and Sabouraud dextrose agar were purchased from Kasvi (Curitiba, PR, Brazil).

2.2. Preparation of Materials

Resins in powder form in pure state and also loaded with 10% (w.t) oxides were added to a hot melt desktop screw extruder (Filastruder, GA, USA) forming printable filaments measuring 1.75 mm diameter; the extrusion was performed at temperatures within 70–85°C and the materials were cooled at ambient conditions; the extrusion speed was maintained at 20 rpm. In sequence, disks (10 × 5 mm) were manufactured using a FDM 3D printer (Prusa Mendel–I3, USA). The printing temperature was maintained at 80°C and the heating of table was maintained at 60°C; the printing feeding speed was maintained at 10 mm/min; the output measure of the hot end is 0.4 mm.

2.3. Susceptibility Assay In Vitro

Mueller-Hinton agar (MHA) was used to determine the antimicrobial activity of materials in study against bacteria and Sabouraud dextrose agar (SDA) was prepared for fungi; the agar media were prepared by following manufacturer instructions. The plates were autoclaved, in sequence; holes were made for insertion of sampling disks. Using a sterile transfer loop, suspensions containing 5 × 106 CFU/mL−1 were inoculated in the agar media. Then, the plates were incubated at bacteriological greenhouse during 48 hours at 34°C, with growth checks performed at every 6 hours. The bioactivity of materials was evaluated by comparing the inhibition zone (diameter in mm) and also number of colony forming units (CFU) in relation to the control plates with positive growth. The semiquantitative K-B disk-diffusion method was used to determine the antimicrobial and antifungal activity of materials [72, 73]. To obtain a more accurate counting of the viable cells, the software ImageJ with the plugin automated colony counting was used [7476].

2.4. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Microanalysis (EDXMA)

Scanning electron microscopy (SEM) analysis was performed using equipment Jeol (JSM-6610LV). Samples of resins in pure state and resins loading metal oxides were placed on a carbon tape and subjected to a vacuum and electron beam. The structural identification of the samples was performed by X-rays diffraction measurements; the equipment used was a Bruker diffractometer (D8 Advance) equipped with a lynx-eye detector. We used a copper X-ray generator tube with radiation Kalfa 1 = 1.5406 A. The power was adjusted to 1600 W (40 kV and 40 mA) for evaluating the signals diffracted in the region between 20° and 120° 2 theta in step 0.025°/s. Samples were prepared in order to avoid any preferential orientation of hkl planes in a standard circular sample holder with a diameter of approximately 2.5 cm.

2.5. UV-Visible (UV-Vis) Absorption and Fourier Transform Infrared (FTIR) Spectroscopy

Spectroscopy analysis in the ultraviolet-visible region (UV-Vis) was carried out utilizing Shimadzu equipment (UV-1800) calibrated at a bandwidth of 1 nm; the wavelength range was maintained from 300 to 900 nm. The Fourier transformed infrared (FTIR) spectroscopy measurements were performed using a Shimadzu Spectrometer Prestige 21 (Shimadzu Corporation, Koyoto, Japan) with a resolution of 2 cm−1. The measurements were carried out on KBr pellets which have transparency in the infrared region 400–4000 cm−1. In this context, the powder samples resins and resins oxides (1 mg) were ground with KBr (300 mg, spectroscopic, high purity). To form the tablets, the mixture was placed in a hydraulic press applying approximately 10 tones, while the air was extracted by a mechanical pump. The FTIR spectra of the samples were recorded at ambient temperature and spectral band between 4000 and 300 cm−1.

2.6. Differential Scanning Calorimetry (DSC)

In the calorimetric analysis, samples were weighed ( mg) and hermetically sealed in aluminum crucibles being placed in a Shimadzu calorimeter model DSC-60 under an atmosphere of nitrogen, flow 50 ml min−1; the heating ratio was maintained from 20°C min−1 to 550°C. The heating rate was maintained at 10°/min and the nitrogen flow was 100 ml/min. The equipment was calibrated for temperature with indium standard (°C) through their melting peak. The enthalpy and heat flow were calibrated using the heat of fusion of indium (28.59 J/g ± 0.30) using the same conditions as the samples. The correction factor was calculated in accordance with the procedures and specifications from Shimadzu.

2.7. Statistical Analysis

For data treatment of the susceptibility assay in vitro, the Experimental Design in Contextualized Blocks was used [77, 78]. In this research, the blocks are the 16 samples (raw data) and the treatments are 15 types of material + control plates, therefore totalizing 16 essays; the assay was carried out in quadruplicate for tested microorganisms; for data treatment, the statistical software SASM-Agri-8.1 was used [79].

2.8. List of Abbreviations

In text, the resins in pure state were identified as follows: Styrax benzoin (B pure), Commiphora myrrha (M pure), and Boswellia papyrifera (P pure). The oxides were identified as titanium dioxide (TiO2); anatase oxide (P25); copper I (Cu2O); and molybdenum trioxide (MoO3), respectively.

3. Results and Discussion

3.1. Susceptibility Assay In Vitro

According to Figure 1(a) during the initial period of 6 hours, the growth of C. albicans was inhibited by materials B (pure), B + TiO2, B + MoO3, B + Cu2O, B + P25, P + MoO3, P + Cu2O, P + P25, M + MoO3, M + Cu2O, B + MoO3, B + Cu2O, B + P25, P + Cu2O, and M + Cu2O ().

Figure 1: Antibiogram of clinical isolates: (a) refers to C. albicans; (b) refers to E. coli; (c) refers to S. aureus; and (d) refers to P. aeruginosa microorganisms.

In 12-hour testing period, its growth of was limited by resin B (pure), B + TiO2, B + MoO3, B + Cu2O, B + P25, P + TiO2, P + MoO3, P + P25, M pure, M + TiO2, M + P25, B + P25, P + P25, and M + TiO2. During 24-hour period, its growth was hampered by all materials, with one exception M + MoO3; at this period, the most efficient materials were B + Cu2O, B + P25, and P + Cu2O. At 36 hours, B + Cu2O, P + Cu2O, M + Ti2O, and M + Cu2O were the most efficient materials. In the test period of 48 hours, its growth was restrained by all materials with one exception in P + P25 and the most efficient materials were B (pure), B + TiO2, B + MoO3, B + Cu2O, P + MoO3, P + Cu2O, M (pure), M + TiO2, and M + MoO3. In short, all materials tested (numerically) impede the proliferation of C. albicans (%), highlighting B + TiO2, B + MoO3, B + Cu2O, P + MoO3, P + Cu2O, M (pure), and M + MoO3 which were the most efficient bioactive materials during the 48-hour assay.

According to Figure 1(b), during initial 6-hour testing period, the most effective materials were B + Cu2O, P + TiO2, M (pure), M + Cu2O, and M + P25. Already during 12-hour testing period, the materials B (pure), B + MoO3, P + MoO3, and M + MoO3 were the most effective. During 24-hour assay, the materials B + TiO2, B + MoO3, B + Cu2O, P + TiO2, P + Cu2O, M + TiO2, M + Cu2O, and M + P25 were the most efficient and, during 36-hour period, the materials B + MoO3, P + TiO2, P + Cu2O, M + TiO2, and M + Cu2O were the most effective. At the final period of 48-hour assay, all materials showed significant effectiveness in relation to the control plate, with only one exception P + P25 (%). In sum, all materials under study (numerically) prevent the proliferation of E. coli, highlighting B + MoO3, P + Cu2O, P + TiO2, and M + TiO2, which stood out as the most bioactive materials.

In relation to Figure 1(c), during the initial period of 6 hours, among the materials that inhibited the growth of this bacterium, B + MoO3, B + Cu2O, P + Cu2O, and M + P25 stood out. However, in the period of 12 hours, all materials tested showed no significant difference concerning the control plates, being considered ineffective during this period of assay. In 24-hour period, the materials B + Cu2O, B + TiO2, B + MoO3, B + Cu2O, B + P25, P + MoO3, M + TiO2, M + MoO3, and M + Cu2O were the most effective in detaining its growth. In the period of 36 hours, B + MoO3, B + Cu2O, P + Cu2O, M + TiO2, and M + Cu2O were the most efficient. At the final period of 48 hours, the materials B + MoO3, B + P25, P + MoO3, M + TiO2, and M + MoO3 were the most effective in inhibiting its growth (%). In short, all materials (numerically) were effective against the bacteria in question, highlighting B + MoO3, P + MoO3, and M + TiO2 and presenting the higher inhibition rates.

According to Figure 1(d) during the initial period of 6 hours, in all cases, there was no significant difference between the materials and the control plate. However, during 12-hour period, significant differences were noted, highlighting B + MoO3 and M + MoO3 which were the most effective in restraining its growth. In the period of 24 hours, in most cases, there was no significant difference between the materials and control plates, with just one exception M + MoO3. In the time interval of 36 hours, in most cases, there were significant differences; it is noteworthy that B + MoO3, M + TiO2 and M + MoO3 were the most bioactive. In the period of 48 hours, in all cases, there were no significant differences between the materials and control plate, with just one exception M + TiO2, highlighting that B + MoO3, M + MoO3, and M + TiO2 were the most efficient biocides in inhibiting the proliferation of S. aureus.

Table 1 shows the results of the antibacterial and antifungal activity of materials against the tested pathogenic microorganisms; the results are exposed as the mean values obtained after 48 hours of assay.

Table 1: Antibacterial activity of materials against selected pathogenic strains.

The results from Table 1 show that the bioactivity of plant resins in pure state was effective and the addition of 10% w.t of oxides nanoparticles increased the efficiency of materials, as expected. Regarding the resin of C. myrrha, the antibiogram of bacteria and fungus under test corroborates the results obtained by Omer et al. [80] and in Alhussaini et al. [81]; concerning the resin of B. papyrifera, the results present in this study are in accordance with Camarda et al. [25], Abdallah et al. [82], Abdalah and Khalid [83], and de Rapper et al. [84]; and in relation to the resin of S. benzoin the results showed here are in accordance with the findings previously obtained by Dahni et al. [85] and De Rapper et al. [86].

3.2. SEM and EDXMA

Figure 2 shows the results of scanning electronic microscopy and energy-dispersive X-ray microanalysis.

Figure 2: EDXMA analysis of metal oxides: Cu2O (a); MoO3 (b); P25 (c); TiO2 (d); Cu2O (e); MoO3 (f); P25 (g); TiO2 (h). SEM analysis of materials: B + P25 (i); M + TiO2 (j); P + Cu2O (k); B + MoO3 (l).

According to Figure 2, the SEM analysis showed that part of oxides nanoparticles was encapsulated by the matrix of resins, and part remained heterogeneously dispersed over the surface of resins. Therefore, better ways of addition of oxides need to be studied, aiming for homogeneous nanostructure of the materials in the best way possible. One option is to increase the shearing forces during extrusion or premixing the content could improve the dispersant size and homogeneity in the dispersion by fractioning large agglomerates [87]. Another approach could be to feed the nanoparticles in suspension into the extrusion line [88]. During the printing of sample disks, an incomplete dispersion of the colloidal oxides in the disks was observed in the form of microsized domains of agglomerated nanoparticles; such agglomeration has previously been reported as a general problem for ceramic nanoparticles dispersed in polymers [89].

As exposed in Figure 3, the EDXMA analysis revealed information about the crystalline structure of samples.

Figure 3: X-ray diffractograms of samples in pure state and also doped with metal oxides nanoparticles.

According to Figure 3, the peaks identified at = 15° confirm the crystalline structure of the B. papyrifera [90]; the peaks found at = 35° and 45° confirm the molecular structure of C. myrrha [91]; the peaks at = 35° and 40° match with the chemical structure of S. benzoin [92]. No secondary phase was found samples, so it was possible to index the monoclinic phase of titanium oxide (PDF number 65-5714) and P25 anatase + rutile (PDF number 21-1272 and 21-1276, respectively). Those peaks at scattering angles of 25.26°, 36.94°, 48.05°, 53.89°, 55.06°, and 62.681° correspond to the reflections from the (101), (004), (200), (105), (211), and (204) crystalline planes of anatase (P25) and TiO2 oxides [93]; it was possible to index the monoclinic phase of copper I (PDF number 89-5898) and molybdenum oxide (PDF number 13-345); the diffraction peak found at = 26° found in sample B + P25 is attributed to the hexagonal structure of graphite (002) [94]; the diffraction peaks found at = 29,6°, 36,7°, and 42,5° are attributed to Cu2O crystalline planes (110), (200), and (220), respectively [95]. Lastly, the diffraction peaks at around 23.20°, 25.51°, 27.18°, 33.66°; 38.76°; 52.64°; 58.79°; and 67.28° correspond to (110), (040), (021), (111), (131), (211), (081), and (261); XRD standard data planes indexed to pure monocyclic and orthorhombic structure of MoO3 [96].

3.3. UV-Vis and FTIR Spectroscopy

Figure 4 shows the UV-Visible spectrograms of samples.

Figure 4: UV-Vis absorption spectra of samples in pure state and also doped with metal oxides nanoparticles.

According to Figure 4, the peaks at 350 nm to 420 nm confirm the molecular vibration of oleo-gum-resin of olibanum [97]; the peak found near of 390 nm with another prominent peak at 480 nm confirms the molecular vibration of myrrh extract [98]; the peak found at 350 nm with vibration extending to another peak at 450 nm confirms molecular vibration of benzoin resin [99]; the intensity of spectra obtained at wavelengths 350 nm is typical for the crystalline structure of anatase + rutile (P25) and titanium dioxide (TiO2) [100]; the spectra showing intensity at wavelengths >300 nm typical for diametric and/or oligomeric species confirm the molecular vibration of MoO3 [101]. Lastly, distinct peaks observed at 600 nm with stretching band until 800 nm confirm the vibration Cu2O [102, 103].

Figure 5 shows FTIR spectrograms.

Figure 5: FTIR spectra of samples in pure state and also doped with metal oxides nanoparticles.

According to Figure 5, the FTIR spectrum of olibanum shows a peak at 3422.37 cm−1 indicating the presence of –OH– group, and the peak at 1705.33 cm−1 indicates the presence of carbonyl group The stretching band at 3428 cm−1 (O–H) and at 2930 cm−1 (C–H) and the bending bands of C–H appear at 1455 and 1378 cm−1 and the stretching band of C=O in carboxyl group appears at 1717 cm−1, the stretching bands of C–O in carboxyl group are identified at 1243 cm−1, and the stretching band of C=O at 1737 cm−1 indicates the presence of esters in olibanum resin [90].

The FTIR spectrum of benzoin shows stretching band of carboxyl group (C=O) at 1719 cm−1, and aromatic skeletal bands at 1601, 1516, and 1451 cm−1, stretching band of C–O in carboxyl group at 1273 cm−1, and a bending band at 712 cm−1 show a phenyl group (Ph–H) peaks identified at 1207 to 1441 cm−1 and 1376 to 1450 cm−1 confirming the presence of coniferyl benzoate [104]; the peak found near to 1650 cm−1 evidences an aliphatic unsaturation with strong C=C bonds, the peak near to 1610 cm−1 shows weak aromatic unsaturation [105], the peaks found at around 2872 and 2923 cm−1 can be attributed to C–H asymmetric and symmetric stretching vibration of methylene [106], also the band observed at around 1450 cm−1 is due to C–H stretching vibration of methylene bridge, a peak at 1560 cm−1 can be assigned to stretching vibration of a carboxylate group (–COOH) [107], the broad peaks at 3500 cm−1 3.420 cm−1 can be assigned to stretching of functional groups O–H [108], additionally peaks at 1580 to 1590 cm−1 correspond to stretching vibration of C=C–C aromatic rings [109], and lastly, a band observed at around 1400 cm−1 refers to C–H stretching vibration of vinyl [110] and broad peaks at 1070 cm−1 can be associated with stretching vibration of C–O–C [111].

The spectrum of myrrh shows the presence of broad bands located at 3.450, 1.630, and 1.550 cm−1 which are attributed to stretching of O–H, –COOH, and C=C and the shift of C=O vibration (symmetric stretching) of –COOH groups; an intense band at 1630 cm−1 confirms the molecular vibration of myrrh resin [105]; the stretching band identified at 1025 to 1200 cm−1 corresponds to the C–O stretching, while the weak bands at 1340 to 1450 cm−1 can be attributed to aliphatic hydrocarbons (CH2 and CH3) groups, groups of aldehydes (–CHO) and ketones (C=O), and the bending modes of bonds in alcohols (O–H), phenols (–OH), and carboxylic acids (–COOH); the bands at 1620 and 1650 cm−1 correspond to aromatic rings, while the bands around 2920 to 2930 cm−1 are analogous to the asymmetric stretching of the C–H bonds [106]; the strong broad band appearing at 3440 cm−1 can be assigned to the stretching vibrations of various groups in alcohols (O–H) and phenols (–OH) [105, 112].

The FTIR spectra of resins doped with titanium oxide nanoparticles reveal a small peak at 1640 cm−1 and a large broad peak between 3450 and 3200 cm−1, corresponding to the stretching vibrations of absorbed water, as well as hydroxyl (OH) groups present in the surface of TiO2–P25 nanopowder [113]; the broad peak between 600 and 400 cm−1 can be assigned to the presence of Ti–O–Ti bonds [114]. Concerning the copper I oxide addition, the peaks found at 529 and 602 cm−1 denotes the (Cu–O) stretching vibration of monoclinic CuO phase; the broad peak at about 490–620 cm−1 (central at 548 cm−1) was due to an overlap between Cu–O stretching vibration of Cu2O/CuO and (–OH) hydroxyl vibrations at 490–510 cm−1 [115]; the peak found at 620 cm−1 is related to Cu2O crystals [116], and the stretching bands found at 298 to 620 cm−1 match the crystalline structure of Cu2O [117, 118].

Regarding molybdenum nanopowder, two peaks found at 876.5 and 595.8 cm−1 are assigned to MoO3 phase [119]; the peak at 996 cm−1 was associated with the terminal stretching vibration of molybdenum in its oxidized form (MoO) that is an indication of layered MoO3 phase; the bands at 867 cm−1 and 558 cm−1 are assigned to stretching vibrations and bending vibrations of the Mo–O–Mo units [120]; the bands at around 3435 cm−1 and 1614 cm−1 can be attributed to the stretching and bending vibrations of (O–H) hydroxyl groups in the adsorbed water [121].

It is important to emphasize that FTIR absorption bands of different compounds in wood resin exudates may be discriminated according to their responses to a given thermal stimulation, because different compounds usually respond in different ways to the same stimulation. For example, the spectral bands of a volatile compound will decrease synchronously if this compound evaporates when the sample is heated [122]; since plant samples usually are complex mixtures, signal-resolving methods are necessary to find the spectral features of compounds of interest in the signal-overlapped IR spectra.

3.4. Differential Scanning Calorimetry (DSC)

Figure 6 shows the DSC curves of materials under analysis.

Figure 6: DSC phase diagram of samples in pure state and also doped with metal oxides nanoparticles.

According to Figure 6, the thermophase diagram of myrrh in pure state presents characteristics of a semicrystalline polymer. The glass transition temperature () of this resin occurs at 75°C; from ambient temperature to this point, the material presents glassy behavior; it is hard, inflexible, and brittle, from 75°C to 300°C and this resin exhibits rubbery behavior, at this range; it is soft and flexible, from 300°C to 500°C, and the material presents viscoelastic state; the resin reaches its melting temperature () at 500°C. The peak at 150°C indicates a primary crystallization and the baseline change with a prominent peak at 300°C indicates a secondary crystallization, so the crystallization temperature () of this material occurs between 150°C and 300°C. In comparison to other available polymers, this resin shows similar characteristics to commercial polyurea.

The resin of benzoin also presents characteristics of a semicrystalline polymer such as polyurea. From ambient temperature till reaching 80°C (), this biopolymers exhibits glassy state; from 80°C to 275°C, it presents rubbery state, with rigid crystalline phase and amorphous mobile phase; two exothermic peaks at 350°C and 420°C indicate that crystallizations occur at this temperature range (), from 275°C to 500°C; the resin presents viscoelastic state; finally, this resin reaches its melting temperature () at 500°C.

Similarly, the resin of olibanum presents characteristics of semicrystalline polymers, such as polyester. Its glass transition temperature () occurs at 80°C; from this point forward until 300°C, this biopolymer presents rubbery state; two peaks at 300°C and 400°C indicate that crystallizations occur at this temperature range (); lastly at 500°C, this biopolymer reaches its melting temperature ().

When the temperature of resins reaches its , the melting of crystallites occurs; at this point, the system power reaches the level needed to win the secondary intermolecular forces between the chains of the crystalline phase, destroying the regular packing structure, thereupon changing from rubbery state to viscous state. This transition only occurs in crystalline phase, so this interpretation only makes sense if it is applied to semicrystalline polymers [123].

It is evident that the addition of oxides nanoparticles will interfere in activation energy of particles by breaking existing chemical bonds between the atoms of each substance, thus favoring the occurrence of other chemical bonds and synthesis of a new substances, and also will influence the thermal-mechanical properties of samples (Ehrenstein et al., 2006) [124]. It will also depend on the degree of crystallinity, since higher crystallinity will result in a harder and more thermally stable but also more brittle material, whereas the amorphous regions provide certain elasticity and impact resistance [125, 126].

As exposed in the DSC signal, the addition of TiO2 and P25 reveals peaks at 300°C and 500°C; at high temperatures, TiO2 nanoparticles dehydrate and coarsen, the final stable phase upon grain growth being always rutile [127]. The overall process (phase transformation, water loss, and coarsening) is irreversible; the TiO2 and P25 samples contain adsorbed water which has the properties of bulk liquid water and a small fraction bound very tightly, probably in the form of hydroxyl groups [128]. The addition of Cu2O shows peaks at 300°C and 450°C, related to the removal of water from the surface [129] and the corrosion of copper nanoparticles [130], concerning the addition of MoO3. The occurrence of peaks at 300°C and 500°C is due to the removal of water and recrystallizations of phases present in the nanopowder [131].

In short, resins showed thermal behavior inherent to semicrystalline polymers such as polyester and polyurea; at some point, the molecules disposed in amorphous matrix obtain enough freedom of motion to spontaneously rearrange themselves into crystalline forms. This transition from amorphous solid to crystalline solid was evidenced by distinct exothermic peaks, as the temperature increases to 500°C samples, eventually reaching its melting point.

4. Conclusion

The biopolymers tested showed inherent characteristics of commercial available semicrystalline polymers; in most cases, the materials inhibited the proliferation of clinical pathogens under study, and, as expected, the addition of oxides nanoparticles increased the bacteriostatic effect. Although their addition was not well structured during the production of filaments and disks, nanoparticles remained disorderly dispersed over the matrix of resins, in most cases being encapsulated by the same.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this study.

Acknowledgments

The authors acknowledge the financial support from the Coordination of Improvement of Higher Level Personnel (CAPES, Brazil) through the Ph.D. scholarship granted.

References

  1. A. Muñoz-Bonilla and M. Fernández-García, “Polymeric materials with antimicrobial activity,” Progress in Polymer Science, vol. 37, no. 2, pp. 281–339, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Cuvas Apan, T. Z. Apan, and A. Apan, “In vitro antimicrobial activity of commonly used vasoactive drugs,” Journal of Clinical Anesthesia, vol. 34, 2016. View at Publisher · View at Google Scholar · View at Scopus
  3. T.-W. Wan, Y. Tomita, N. Saita et al., “Emerging ST121/agr4 community-associated methicillin-resistant Staphylococcus aureus (MRSA) with strong adhesin and cytolytic activities: Trigger for MRSA pneumonia and fatal aspiration pneumonia in an influenza-infected elderly,” New Microbes and New Infections, vol. 13, pp. 17–21, 2016. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Gao, Y. Zhang, Y. Wang et al., “Reduction of PCN biosynthesis by NO in Pseudomonas aeruginosa,” Redox Biology, vol. 8, pp. 252–258, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Almaas, B. Kovács, T. Vicsek, Z. N. Oltvai, and A.-L. Barabási, “Global organization of metabolic fluxes in the bacterium Escherichia coli,” Nature, vol. 427, no. 6977, pp. 839–843, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Ibekwe, P. M. Watt, C. M. Grieve, V. K. Sharma, and S. R. Lyons, “Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands,” Applied and Environmental Microbiology, vol. 68, no. 10, pp. 4853–4862, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Sun, C. Lei, L. Guo, and Y. Zhou, “Separable detecting of Escherichia coli O157H:H7 by a giant magneto-resistance-based bio-sensing system,” Sensors and Actuators, B: Chemical, vol. 234, pp. 485–492, 2016. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Williams and M. Lewis, “Pathogenesis and treatment of oral Candidosis,” Journal of Oral Microbiology, vol. 3, no. 2011, article 5771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. N. B. Ellepola, L. P. Samaranayake, and Z. U. Khan, “Extracellular phospholipase production of oral Candida albicans isolates from smokers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to polyene, echinocandin and azole antimycotics,” Brazilian Journal of Microbiology, vol. 47, no. 4, pp. 911–916, 2016. View at Publisher · View at Google Scholar · View at Scopus
  10. C. L. Ventola, “The antibiotic resistance crisis: part 2: management strategies and new agentsts,” Pharmacy and Therapeutics, vol. 40, no. 5, pp. 344–352, 2015. View at Google Scholar · View at Scopus
  11. T. D. Michl, K. E. S. Locock, S. S. Griesser, M. Haeussler, L. Meagher, and H. J. Griesser, “Bio-inspired antimicrobial polymers,” in Biosynthetic Polymers for Medical Applications, pp. 87–127, Elsevier Science B.V, Amsterdam, Netherlands, 2016. View at Google Scholar
  12. D. Schillaci, V. Arizza, T. Dayton, L. Camarda, and V. Di Stefano, “In vitro anti-biofilm activity of Boswellia spp. oleogum resin essential oils,” Letters in Applied Microbiology, vol. 47, no. 5, pp. 433–438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. F. T. Medeiros and U. P. De Albuquerque, “The pharmacy of the Benedictine monks: The use of medicinal plants in Northeast Brazil during the nineteenth century (1823-1829),” Journal of Ethnopharmacology, vol. 139, no. 1, pp. 280–286, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. A. Sargin, E. Akçicek, and S. Selvi, “An ethnobotanical study of medicinal plants used by the local people of Alaşehir (Manisa) in Turkey,” Journal of Ethnopharmacology, vol. 150, no. 3, pp. 860–874, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Hübsch, R. L. Van Zyl, I. E. Cock, and S. F. van Vuuren, “Interactive antimicrobial and toxicity profiles of conventional antimicrobials with Southern african medicinal plants,” South African Journal of Botany, vol. 93, pp. 185–197, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Kong, J. Yang, Y. Zhang, Y. Fang, K. Nishinari, and G. O. Phillips, “Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles,” International Journal of Biological Macromolecules, vol. 65, pp. 155–162, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. A. A. Shahat, A. Y. Ibrahim, and M. S. Elsaid, “Polyphenolic content and antioxidant activity of some wild Saudi Arabian asteraceae plants,” Asian Pacific Journal of Tropical Medicine, vol. 7, no. 7, pp. 545–551, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. A. N. Shikov, O. N. Pozharitskaya, V. G. Makarov, H. Wagner, R. Verpoorte, and M. Heinrich, “Medicinal Plants of the Russian Pharmacopoeia; Their history and applications,” Journal of Ethnopharmacology, vol. 154, no. 3, pp. 481–536, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Sultana, H. M. Asif, N. Akhtar, and K. Ahmad, “Medicinal plants with potential antipyretic activity: A review,” Asian Pacific Journal of Tropical Disease, vol. 5, no. 1, pp. S202–S208, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Özdemir and K. Alpınar, “An ethnobotanical survey of medicinal plants in western part of central Taurus Mountains: Aladaglar (Nigde-Turkey),” Journal of Ethnopharmacology, vol. 166, pp. 53–65, 2015. View at Publisher · View at Google Scholar
  21. M. Bahmani, K. Saki, S. Shahsavari, M. Rafieian-Kopaei, R. Sepahvand, and A. Adineh, “Identification of medicinal plants effective in infectious diseases in Urmia, northwest of Iran,” Asian Pacific Journal of Tropical Biomedicine, vol. 5, no. 10, pp. 858–864, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Mendonça Pauletti, A. R. Araújo, M. C. M. Young, A. M. Giesbrecht, and V. Da Silva Bolzani, “nor-Lignans from the leaves of Styrax ferrugineus (Styracaceae) with antibacterial and antifungal activity,” Phytochemistry, vol. 55, no. 6, pp. 597–601, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Saeed and A. W. Sabir, “Antibacterial activities of some constituents from oleo-gum-resin of Commiphora mukul,” Fitoterapia, vol. 75, no. 2, pp. 204–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. R. A. A. Mothana and U. Lindequist, “Antimicrobial activity of some medicinal plants of the island Soqotra,” Journal of Ethnopharmacology, vol. 96, no. 1-2, pp. 177–181, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Camarda, T. Dayton, V. Di Stefano, R. Pitonzo, and D. Schillaci, “Chemical composition and antimicrobial activity of some oleogum resin essential oils from Boswellia spp. (Burseraceae),” Annali di Chimica, vol. 97, no. 9, pp. 837–844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. F. van Vuuren, G. P. P. Kamatou, and A. M. Viljoen, “Volatile composition and antimicrobial activity of twenty commercial frankincense essential oil samples,” South African Journal of Botany, vol. 76, no. 4, pp. 686–691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. P. Paraskeva, S. F. van Vuuren, R. L. van Zyl, H. Davids, and A. M. Viljoen, “The in vitro biological activity of selected South African Commiphora species,” Journal of Ethnopharmacology, vol. 119, no. 3, pp. 673–679, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Wanner, E. Schmidt, S. Bail et al., “Chemical composition and antibacterial activity of selected essential oils and some of their main compounds,” Natural Product Communications, vol. 5, no. 9, pp. 1359–1364, 2010. View at Google Scholar · View at Scopus
  29. T. Shen, G. Li, X. Wang, and H. Lou, “The genus Commiphora: a review of its traditional uses, phytochemistry and pharmacology,” Journal of Ethnopharmacology, vol. 142, no. 2, pp. 319–330, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Al-Daihan, M. Al-Faham, N. Al-shawi et al., “Antibacterial activity and phytochemical screening of some medicinal plants commonly used in Saudi Arabia against selected pathogenic microorganisms,” Journal of King Saud University - Science, vol. 25, no. 2, pp. 115–120, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. A. A. Mohamed, S. I. Ali, F. K. EL-Baz, A. K. Hegazy, and M. A. Kord, “Chemical composition of essential oil and in vitro antioxidant and antimicrobial activities of crude extracts of Commiphora myrrha resin,” Industrial Crops and Products, vol. 57, pp. 10–16, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Wang, Y.-B. Wang, H. Chen, L. Chen, S.-W. Liang, and S.-M. Wang, “Two new triterpenoids from the resin of Styrax tonkinensis,” Journal of Asian Natural Products Research, vol. 17, no. 8, pp. 823–827, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. L. O. Hanus, T. Rezanka, V. M. Dembitsky, and A. Moussaieff, “Myrrh -Commiphora chemistry,” Biomedical Papers, vol. 149, no. 1, pp. 3–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. F. S. Li, D. L. Yan, R. R. Liu, K. P. Xu, and G. S. Tan, Chemical Constituents of Boswellia carterii (Frankincense), vol. 8, pp. 25–27, 2007.
  35. D. Poeckel and O. Werz, “Boswellic acids: Biological actions and molecular targets,” Current Medicinal Chemistry, vol. 13, no. 28, pp. 3359–3369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. H. P. T. Ammon, “Boswellic acids in chronic inflammatory diseases,” Planta Medica, vol. 72, no. 12, pp. 1100–1116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Safayhi and E.-R. Sailer, “Anti-inflammatory actions of pentacyclic triterpenes,” Planta Medica, vol. 63, no. 6, pp. 487–493, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. K. H. C. Başer, B. Demirci, A. Dekebo, and E. Dagne, “Essential oils of some Boswellia spp., myrrh and opopanax,” Flavour and Fragrance Journal, vol. 18, no. 2, pp. 153–156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Tayoub, I. Schwob, J.-M. Bessière et al., “Composition of volatile oils of Styrax (Styrax officinalis L.) leaves at different phenological stages,” Biochemical Systematics and Ecology, vol. 34, no. 9, pp. 705–709, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J.-J. Filippi, C. Castel, X. Fernandez, M. Rouillard, M. Gaysinski, and S. Lavoine-Hanneguelle, “An unusual acenaphthylene-type sesquiterpene hydrocarbon from Siam and Sumatra benzoin gum,” Phytochemistry Letters, vol. 2, no. 4, pp. 216–219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. D. L. Custódio and V. F. Veiga-Junior, “True and common balsams,” Brazilian Journal of Pharmacognosy, vol. 22, no. 6, pp. 1372–1383, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Burger, A. Casale, A. Kerdudo et al., “New insights in the chemical composition of benzoin balsams,” Food Chemistry, vol. 210, pp. 613–622, 2016. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Kumar and S. K. Gupta, “Rosin, A naturally derived excipient in drug delivery systems,” Polim. Med, vol. 43, no. 1, pp. 45–48, 2013. View at Google Scholar
  44. S. K. Bajpai and M. Kumari, “A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels,” International Journal of Biological Macromolecules, vol. 80, pp. 177–188, 2015. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Dong, X. Zhang, H. Cai, and C. Cao, “Facile and one-step synthesis of monodisperse silver nanoparticles using gum acacia in aqueous solution,” Journal of Molecular Liquids, vol. 196, pp. 135–141, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. A. J. Kora and L. Rastogi, “Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst,” Arabian Journal of Chemistry, 2015. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Bernela, M. Ahuja, and R. Thakur, “Enhancement of anti-inflammatory activity of glycyrrhizic acid by encapsulation in chitosan-katira gum nanoparticles,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 105, pp. 141–147, 2016. View at Publisher · View at Google Scholar · View at Scopus
  48. S. K. Bajpai, M. Jadaun, and S. Tiwari, “Synthesis, characterization and antimicrobial applications of zinc oxide nanoparticles loaded gum acacia/poly(SA) hydrogels,” Carbohydrate Polymers, vol. 153, pp. 60–65, 2016. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Joy Prabu and I. Johnson, “Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata,” Karbala International Journal of Modern Science, vol. 1, no. 4, pp. 237–246, 2015. View at Publisher · View at Google Scholar
  50. J. Rodríguez-Hernández, “Antimicrobial micro/nanostructured functional polymer surfaces,” in Nanobiomaterialsin Antimicrobial Therapy. Applications of Nanobiomaterials, vol. 6, pp. 153–192, Elsevier Science B.V, Amsterdam, Netherlands, 2016. View at Google Scholar
  51. M. Quaresimin, R. Bertani, M. Zappalorto, A. Pontefisso, F. Simionato, and A. Bartolozzi, “Multifunctional polymer nanocomposites with enhanced mechanical and anti-microbial properties,” Composites Part B: Engineering, vol. 80, article no. 3615, pp. 108–115, 2015. View at Publisher · View at Google Scholar · View at Scopus
  52. M. S. Ganewatta and C. Tang, “Controlling macromolecular structures towards effective antimicrobial polymers,” Polymer (United Kingdom), vol. 63, pp. A1–A29, 2015. View at Publisher · View at Google Scholar · View at Scopus
  53. D. F. Williams, “On the nature of biomaterials,” Biomaterials, vol. 30, no. 30, pp. 5897–5909, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. R. K. Jha, P. K. Jha, K. Chaudhury, S. V. Rana, and S. K. Guha, “An emerging interface between life science and nanotechnology: present status and prospects of reproductive healthcare aided by nano-biotechnology,” Nano Reviews, vol. 5, no. 1, article 22762, 2014. View at Publisher · View at Google Scholar
  55. C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases, vol. 2, pp. MR17–MR71, 2007. View at Google Scholar
  56. L. Zhang, X. Wang, Y. Miao et al., “Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy,” Journal of Hazardous Materials, vol. 304, pp. 186–195, 2016. View at Publisher · View at Google Scholar · View at Scopus
  57. J. J. Water, A. Bohr, J. Boetker et al., “Three-dimensional printing of drug-eluting implants: Preparation of an antimicrobial polylactide feedstock material,” Journal of Pharmaceutical Sciences, vol. 104, no. 3, pp. 1099–1107, 2015. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Sandler, I. Kassamakov, H. Ehlers, N. Genina, T. Ylitalo, and E. Haeggstrom, “Rapid interferometric imaging of printed drug laden multilayer structures,” Scientific Reports, vol. 4, article no. 4020, 2014. View at Publisher · View at Google Scholar · View at Scopus
  59. T. M. Rankin, N. A. Giovinco, D. J. Cucher, G. Watts, B. Hurwitz, and D. G. Armstrong, “Three-dimensional printing surgical instruments: are we there yet?” Journal of Surgical Research, vol. 189, no. 2, pp. 193–197, 2014. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Yue, P. Zhao, J. Y. Gerasimov et al., “3D-Printable Antimicrobial Composite Resins,” Advanced Functional Materials, vol. 25, no. 43, pp. 6756–6767, 2015. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Ion, E. Andronescu, D. Řadulescu et al., “Biocompatible 3d matrix with antimicrobial properties,” Molecules, vol. 21, no. 1, Article ID 21010115, 2016. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Karl, D. Djuric, and K. Kolter, “Pharmaceutical Excipients for Hot-Melt Extrusion,” Pharmaceutical Technology, vol. 35, no. 5, pp. 74–82, 2011. View at Google Scholar · View at Scopus
  63. M. Wilson, M. A. Williams, D. S. Jones, and G. P. Andrews, “Hot-melt extrusion technology and pharmaceutical application,” Therapeutic Delivery, vol. 3, no. 6, pp. 787–797, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Lu, Z. Guo, Y. Li et al., “Application of hot melt extrusion for poorly water-soluble drugs: Limitations, advances and future prospects,” Current Pharmaceutical Design, vol. 20, no. 3, pp. 369–387, 2014. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Stanković, H. W. Frijlink, and W. L. J. Hinrichs, “Polymeric formulations for drug release prepared by hot melt extrusion: application and characterization,” Drug Discovery Today, vol. 20, no. 7, article no. 1575, pp. 812–823, 2015. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Melocchi, F. Parietti, A. Maroni, A. Foppoli, A. Gazzaniga, and L. Zema, “Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling,” International Journal of Pharmaceutics, vol. 509, no. 1-2, pp. 255–263, 2016. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Goole and K. Amighi, “3D printing in pharmaceutics: A new tool for designing customized drug delivery systems,” International Journal of Pharmaceutics, vol. 499, no. 1-2, pp. 376–394, 2016. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Mayer, “Rigid biological systems as models for synthetic composites,” Science, vol. 310, no. 5751, pp. 1144–1147, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, and R. O. Ritchie, “Tough, bio-inspired hybrid materials,” Science, vol. 322, no. 5907, pp. 1516–1520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Yuan and A. H. E. Müller, “One-dimensional organic-inorganic hybrid nanomaterials,” Polymer, vol. 51, no. 18, pp. 4015–4036, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Sanchez, B. Julián, P. Belleville, and M. Popall, “Applications of hybrid organic-inorganic nanocomposites,” Journal of Materials Chemistry, vol. 15, no. 35-36, pp. 3559–3592, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic susceptibility testing by a standardized single disk method,” The American Journal of Clinical Pathology, vol. 45, no. 4, pp. 493–496, 1966. View at Google Scholar · View at Scopus
  73. B. Bonev, J. Hooper, and J. Parisot, “Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method,” Journal of Antimicrobial Chemotherapy, vol. 61, no. 6, pp. 1295–1301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Marotz, C. Lübbert, and W. Eisenbeiß, “Effective object recognition for automated counting of colonies in Petri dishes (automated colony counting),” Computer Methods and Programs in Biomedicine, vol. 66, no. 2-3, pp. 183–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Putman, R. Burton, and M. H. Nahm, “Simplified method to automatically count bacterial colony forming unit,” Journal of Immunological Methods, vol. 302, no. 1-2, pp. 99–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Sieuwerts, F. A. M. De Bok, E. Mols, W. M. De Vos, and J. E. T. Van Hylckama Vlieg, “A simple and fast method for determining colony forming units,” Letters in Applied Microbiology, vol. 47, no. 4, pp. 275–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. I. Rodrigues and A. F. Lemma, Planejamento de experimentos e otimização de processos, Cárita, Campinas, SP, Brazil, 2nd edition, 2009.
  78. C. A. Mucelin, Estatística Elementar e experimental aplicada às tecnologias, Medianeira, PR, Brazil, Valério, 2nd edition, 2006.
  79. M. G. Canteri, R. A. Althaus, J. S. Virgens Filho, E. A. Giglioti, and C. V. Godoy, “SASM - Agri: Sistema para anßlise e separaτπo de mΘdias em experimentos agrφcolas pelos mΘtodos ScoftKnott, Tukey e Duncan,” Revista Brasileira de Agrocomputaτπo, vol. 1, no. 2, pp. 18–24, 2001. View at Google Scholar
  80. S. A. Omer, S. E. I. Adam, and O. B. Mohammed, “Antimicrobial activity of commiphora myrrha against some bacteria and candida albicans isolated from gazelles at king khalid wildlife research centre,” Research Journal of Medicinal Plant, vol. 5, no. 1, pp. 65–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. M. S. Alhussaini, A. M. Saadabi, and M. I. Alghonaim, “An evaluation of the antimicrobial activity of commiphora myrrha nees (Engl.) oleo-gum resins from Saudi Arabia,” Journal of Medical Sciences (Faisalabad), vol. 15, no. 4, pp. 198–203, 2015. View at Publisher · View at Google Scholar · View at Scopus
  82. E. M. Abdallah, A. S. Khalid, and N. Ibrahim, “Antibacterial activity of oleo-gum resins of Commiphora molmol and Boswellia papyrifera against methicillin resistant Staphylococcus aureus (MRSA),” AnnalidiChimica, vol. 97, no. 9, pp. 837–844, 2009. View at Google Scholar · View at Scopus
  83. E. M. Abdalah and A. E. Khalid, “A preliminary evaluation of the antibacterial effects of commiphora molmol and boswellia papyrifera oleo-gum resins vapor,” International Journal of Chemical and Biochemical Sciences, vol. 1, pp. 1–15.
  84. S. de Rapper, S. F. Van Vuuren, G. P. P. Kamatou, A. M. Viljoen, and E. Dagne, “The additive and synergistic antimicrobial effects of select frankincense and myrrh oils—a combination from the pharaonic pharmacopoeia,” Letters in Applied Microbiology, vol. 54, no. 4, pp. 352–358, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Dahni, G. K. Eri, A. V. S. Gita Samira et al., “Anti-microbial screening of some novel benzoin derivatives,” International Journal of Advances in Pharmaceutical Research, vol. 2, no. 12, pp. 639–642.
  86. S. De Rapper, G. Kamatou, A. Viljoen, and S. van Vuuren, “The in vitro antimicrobial activity of Lavandula angustifolia essential oil in combination with other aroma-therapeutic oils,” Evidence-based Complementary and Alternative Medicine, vol. 2013, Article ID 852049, 10 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Shen, L. Fang, X. Chen, and Y. Tang, “Structure and properties of polyacrylic acid modified hydroxyapatite/liquid crystal polymer composite,” Journal of Reinforced Plastics and Composites, vol. 30, no. 13, pp. 1155–1163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Baumgartner, A. Eitzlmayr, N. Matsko, C. Tetyczka, J. Khinast, and E. Roblegg, “Nano-extrusion: A promising tool for continuous manufacturing of solid nano-formulations,” International Journal of Pharmaceutics, vol. 477, no. 1, pp. 1–11, 2014. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Takayama, M. Todo, and A. Takano, “The effect of bimodal distribution on the mechanical properties of hydroxyapatite particle filled poly(L-lactide) composites,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 2, no. 1, pp. 105–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Mohanty and M. G. Krishna, “Proximate analysis and standardization of plant exudates: gum olibanum and gum dikamali,” International Journal of Pharmaceutical Sciences Review and Research, vol. 24, no. 1, pp. 172–176, 2014. View at Google Scholar · View at Scopus
  91. A. M. Atta, H. A. Al-Lohedan, and S. A. Al-Hussain, “Synthesis of stabilized myrrh-capped hydrocolloidal magnetite nanoparticles,” Molecules, vol. 19, no. 8, pp. 11263–11278, 2014. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Du, H. Singh, and T.-H. Yi, “Antibacterial, anti-biofilm and anticancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract,” Bioprocess and Biosystems Engineering, vol. 39, no. 12, pp. 1923–1931, 2016. View at Publisher · View at Google Scholar · View at Scopus
  93. Z. He, W. Que, J. Chen, Y. He, and G. Wang, “Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization,” Journal of Physics and Chemistry of Solids, vol. 74, no. 7, pp. 924–928, 2013. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Hu, Y. Bandog, J. Zhan, C. Zhi, and D. Golberg, “Carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg3N2 nanowires,” Nano Letters, vol. 6, no. 6, pp. 1136–1140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. D. Cao, N. Nasori, Z. Wang et al., “Facile surface treatment on Cu2O photocathodes for enhancing the photoelectrochemical response,” Applied Catalysis B: Environmental, vol. 198, pp. 398–403, 2016. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Balaji, J. Chandrasekaran, and M. Raja, “Role of substrate temperature on MoO3 thin films by the JNS pyrolysis technique for P-N junction diode application,” Materials Science in Semiconductor Processing, vol. 43, pp. 104–113, 2016. View at Publisher · View at Google Scholar · View at Scopus
  97. A. J. Kora, R. B. Sashidhar, and J. Arunachalam, “Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles,” Process Biochemistry, vol. 47, no. 10, pp. 1516–1520, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. I. M. El-Sherbiny, E. Salih, and F. M. Reicha, “Green synthesis of densely dispersed and stable silver nanoparticles using myrrh extract and evaluation of their antibacterial activity,” Journal of Nanostructure in Chemistry, vol. 3, no. 8, pp. 1–7, 2013. View at Publisher · View at Google Scholar
  99. M. Hovaneissian, P. Archier, C. Mathe, G. Culioli, and C. Vieillescazes, “Analytical investigation of styrax and benzoin balsams by HPLC-PAD-fluorimetry and GC-MS,” Phytochemical Analysis, vol. 19, no. 4, pp. 301–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Man, L. Mu, Y. Wang, S. Lin, G. L. Rempel, and Q. Pan, “Synthesis and characterization of rutile titanium dioxide/polyacrylate nanocomposites for applications in ultraviolet light-shielding materials,” Polymer Composites, vol. 36, no. 1, pp. 8–16, 2015. View at Publisher · View at Google Scholar · View at Scopus
  101. J. P. Thielemann, T. Ressler, A. Walter, G. Tzolova-Müller, and C. Hess, “Structure of molybdenum oxide supported on silica SBA-15 studied by Raman, UV-Vis and X-ray absorption spectroscopy,” Applied Catalysis A: General, vol. 399, no. 1-2, pp. 28–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. M. S. M. Suan, M. R. Johan, N. L. Hawari, and H. A. Ching, “Annealing effects on the properties of copper oxide thin films prepared by chemical deposition,” International Journal of Electrochemical Science, vol. 6, no. 12, pp. 6094–6104, 2011. View at Google Scholar · View at Scopus
  103. G. Varuguese, V. Rini, S. P. Suraj, and K. T. Usha, “Characterization and optical studies of copper oxide nanostructures doped with lanthanum ions,” Advances in Materials Science, vol. 14, no. 4, pp. 49–60, 2014. View at Google Scholar
  104. J.-B. Chen, Q. Zhou, and S.-Q. Sun, “Direct chemical characterization of natural wood resins by temperature-resolved and space-resolved Fourier transform infrared spectroscopy,” Journal of Molecular Structure, vol. 1115, pp. 55–62, 2016. View at Publisher · View at Google Scholar · View at Scopus
  105. H. G. M. Edwards and M. J. Falk, Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy, vol. 53, Elsevier, Amsterdam, Netherlands, 1997. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Xue, X. Zhang, Z.-F. Wu, H. Wang, X. Ding, and X.-Y. Tian, “Preparation and flame retardancy of polyurethane/POSS nanocomposites,” Chinese Journal of Chemical Physics, vol. 26, no. 4, pp. 445–450, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. F. Jiang, X. Wang, and D. Wu, “Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials,” Applied Energy, vol. 134, pp. 456–468, 2014. View at Publisher · View at Google Scholar · View at Scopus
  108. S. N. Kharat and V. D. Mendhulkar, ““synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract”,” Materials Science and Engineering C, vol. 62, pp. 719–724, 2016. View at Publisher · View at Google Scholar · View at Scopus
  109. C. M. Baicea, V. I. Luntraru, D. I. Vaireanu, E. Vasile, and R. Trusca, “Composite membranes with poly(ether ether ketone) as support and polyaniline like structure, with potential applications in fuel cells,” Central European Journal of Chemistry, vol. 11, no. 3, pp. 438–445, 2013. View at Publisher · View at Google Scholar · View at Scopus
  110. B. Guan, P. A. Latif, and T. Yap, “Physical preparation of activated carbon from sugarcane bagasse and corn husk and its physical and chemical characteristics,” Int. J. Eng. Res. Sci. Technol, vol. 2, pp. 1–14, 2013. View at Publisher · View at Google Scholar
  111. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12-13, pp. 1781–1788, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Yilmaz, H. Turkdemir, M. A. Kilic et al., “Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana,” Materials Chemistry and Physics, vol. 130, no. 3, pp. 1195–1202, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. Q. Chen and N. L. Yakovlev, “Adsorption and interaction of organosilanes on TiO2 nanoparticles,” Applied Surface Science, vol. 257, no. 5, pp. 1395–1400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. F. Cheng, S. M. Sajedin, S. M. Kelly, A. F. Lee, and A. Kornherr, “UV-stable paper coated with APTES-modified P25 TiO2 nanoparticles,” Carbohydrate Polymers, vol. 114, pp. 246–252, 2014. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Pendashteh, M. F. Mousavi, and M. S. Rahmanifar, “Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor,” Electrochimica Acta, vol. 88, pp. 347–357, 2013. View at Publisher · View at Google Scholar · View at Scopus
  116. J.-J. Ruan, Y.-Q. Huo, and B. Hu, “Three-dimensional Ni(OH)2/Cu2O/CuO porous cluster grown on nickel foam for high performance supercapacitor,” Electrochimica Acta, vol. 215, pp. 108–113, 2016. View at Publisher · View at Google Scholar · View at Scopus
  117. T. Yu, X. Zhao, Z. X. Shen, Y. H. Wu, and W. H. Su, “Investigation of individual CuO nanorods by polarized micro-Raman scattering,” Journal of Crystal Growth, vol. 268, no. 3-4, pp. 590–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. M. A. Dar, S. H. Nam, Y. S. Kim, and W. B. Kim, “Synthesis, characterization, and electrochemical properties of self-assembled leaf-like CuO nanostructures,” Journal of Solid State Electrochemistry, vol. 14, no. 9, pp. 1719–1726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. Zhu, X. Li, D. Zhang et al., “Tuning the surface charges of MoO3 by adsorption of polyethylenimine to realize the electrophoretic deposition of high-exothermic Al/MoO3 nanoenergetic films,” Materials and Design, vol. 109, pp. 652–658, 2016. View at Publisher · View at Google Scholar · View at Scopus
  120. C. V. Subba Reddy, E. H. Walker Jr., C. Wen, and S.-I. Mho, “Hydrothermal synthesis of MoO3 nanobelts utilizing poly(ethylene glycol),” Journal of Power Sources, vol. 183, no. 1, pp. 330–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. L. Wang, X. Zhang, Y. Ma, M. Yang, and Y. Qi, “Rapid microwave-assisted hydrothermal synthesis of one-dimensional MoO3 nanobelts,” Materials Letters, vol. 164, pp. 623–626, 2016. View at Publisher · View at Google Scholar · View at Scopus
  122. J.-B. Chen, S.-Q. Sun, and Q. Zhou, “Data-driven signal-resolving approaches of infrared spectra to explore the macroscopic and microscopic spatial distribution of organic and inorganic compounds in plant,” Analytical and bioanalytical chemistry, vol. 407, no. 19, pp. 5695–5706, 2015. View at Publisher · View at Google Scholar · View at Scopus
  123. S. V. Canevarolo Junior, Polimer Science, Artliber, São Paulo, SP, Brazil, 2nd edition, 2006.
  124. G. W. Ehrenstein, Polymericmaterials:Structure, Properties, Applications, Hanser Gardner Publications, Cincinnat, Ohio, USA, 2001. View at Publisher · View at Google Scholar
  125. G. Menges, E. Haberstroh, W. Michaeli, and E. Schmachtenberg, Plastics Materials Science, Carl Hanser Verlag, Munchen, Germany.
  126. C. E. Carraher and R. B. Seymour, Eymour/Carraher’Spolymerchemistry, Marcel Dekke, New York, NY, USA, 6th edition, 2003.
  127. C. Marinescu, A. Sofronia, C. Rusti et al., “DSC investigation of nanocrystalline TiO2 powder,” Journal of Thermal Analysis and Calorimetry, vol. 103, no. 1, pp. 49–57, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. G. Madras, B. J. McCoy, and A. Navrotsky, “Kinetic model for TiO2 polymorphic transformation from anatase to rutile,” Journal of the American Ceramic Society, vol. 90, no. 1, pp. 250–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. N. Topnani, S. Kushwaha, and T. Athar, “Wet synthesis of copper oxide nanopowder,” International Journal of Green Nanotechnology: Materials Science and Engineering, vol. 1, no. 2, pp. M67–M73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. Wan, X. Wang, H. Sun, Y. Li, K. Zhang, and Y. Wu, “Corrosion behavior of copper at elevated temperature,” International Journal of Electrochemical Science, vol. 7, no. 9, pp. 7902–7914, 2012. View at Google Scholar · View at Scopus
  131. A. Lagashetty, V. Havanoor, S. Basavaraja, and A. Venkataraman, “Synthesis of MoO3 and its polyvinyl alcohol nanostructured film,” Bulletin of Materials Science, vol. 28, no. 5, pp. 477–481, 2005. View at Publisher · View at Google Scholar · View at Scopus