Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2008, Article ID 735101, 12 pages
http://dx.doi.org/10.1155/2008/735101
Research Article

Proteome-Level Responses of Escherichia coli to Long-Chain Fatty Acids and Use of Fatty Acid Inducible Promoter in Protein Production

1Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahangno, Yuseong-gu, Daejeon 305-701, South Korea
2Department of Bio and Brain Engineering and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
3Korea Basic Science Institute, 52 Yeoeun-dong, Yuseong-gu, Daejeon 305-333, South Korea

Received 31 August 2007; Accepted 18 November 2007

Academic Editor: Daniel Howard

Copyright © 2008 Mee-Jung Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. N. Black and C. C. DiRusso, “Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli,” Biochimica et Biophysica Acta, vol. 1210, no. 2, pp. 123–145, 1994. View at Publisher · View at Google Scholar
  2. C. C. DiRusso, P. N. Black, and J. D. Weimar, “Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria,” Progress in Lipid Research, vol. 38, no. 2, pp. 129–197, 1999. View at Publisher · View at Google Scholar
  3. D. P. Clark and J. E. Cronan Jr., “Two-carbon compounds and fatty acids as carbon sources,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, F. C. Neidhardt, R. Curtiss III, J. L. Ingraham et al., Eds., pp. 343–357, ASM Press, Washington, DC, USA, 1996. View at Google Scholar
  4. C. C. DiRusso, A. K. Metzger, and T. L. Heimert, “Regulation of transcription of genes required for fatty acid transport and unsaturated fatty acid biosynthesis in Escherichia coli by FadR,” Molecular Microbiology, vol. 7, no. 2, pp. 311–322, 1993. View at Publisher · View at Google Scholar
  5. J. W. Campbell and J. E. Cronan Jr., “Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene,” Journal of Bacteriology, vol. 183, no. 20, pp. 5982–5990, 2001. View at Publisher · View at Google Scholar
  6. N. Raman, P. N. Black, and C. C. DiRusso, “Characterization of the fatty acid-responsive transcription factor FadR. Biochemical and genetic analyses of the native conformation and functional domains,” Journal of Biological Chemistry, vol. 272, no. 49, pp. 30645–30650, 1997. View at Publisher · View at Google Scholar
  7. M.-J. Han and S. Y. Lee, “The Escherichia coli proteome: past, present, and future prospects,” Microbiology and Molecular Biology Reviews, vol. 70, no. 2, pp. 362–439, 2006. View at Publisher · View at Google Scholar
  8. A. Matin, “Starvation promoters of Escherichia coli. Their function, regulation, and use in bioprocessing and bioremediation,” Annals of the New York Academy of Sciences, vol. 721, pp. 277–291, 1994. View at Publisher · View at Google Scholar
  9. S. J. Park and S. Y. Lee, “Identification and characterization of a new enoyl coenzyme a hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli,” Journal of Bacteriology, vol. 185, no. 18, pp. 5391–5397, 2003. View at Publisher · View at Google Scholar
  10. S. C. Makrides, “Strategies for achieving high-level expression of genes in Escherichia coli,” Microbiological Reviews, vol. 60, no. 3, pp. 512–538, 1996. View at Google Scholar
  11. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1989.
  12. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 259, pp. 680–685, 1970. View at Publisher · View at Google Scholar
  13. M.-J. Han, J. W. Lee, and S. Y. Lee, “Enhanced proteome profiling by inhibiting proteolysis with small heat shock proteins,” Journal of Proteome Research, vol. 4, no. 6, pp. 2429–2434, 2005. View at Publisher · View at Google Scholar
  14. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Publisher · View at Google Scholar
  15. J. W. Lee, S. Y. Lee, H. Song, and J.-S. Yoo, “The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium,” Proteomics, vol. 6, no. 12, pp. 3550–3566, 2006. View at Publisher · View at Google Scholar
  16. M.-J. Han, S. S. Yoon, and S. Y. Lee, “Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate),” Journal of Bacteriology, vol. 183, no. 1, pp. 301–308, 2001. View at Publisher · View at Google Scholar
  17. H. Nikaido, “Outer membrane,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, F. C. Neidhardt, R. Curtiss III, J. L. Ingraham et al., Eds., pp. 29–47, ASM Press, Washington, DC, USA, 1996. View at Google Scholar
  18. J. Neuhard and R. A. Kelln, “Biosynthesis and conversions of pyrimidines,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, F. C. Neidhardt, R. Curtiss III, J. L. Ingraham et al., Eds., pp. 580–599, ASM Press, Washington, DC, USA, 1996. View at Google Scholar
  19. E. C. C. Lin, “Dissimilatory pathways for sugars, polyols, and carboxylates,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, F. C. Neidhardt, R. Curtiss III, J. L. Ingraham et al., Eds., pp. 307–342, ASM Press, Washington, DC, USA, 1996. View at Google Scholar
  20. F. X. Quintilla, L. Baldoma, J. Badia, and J. Aguilar, “Aldehyde dehydrogenase induction by glutamate in Escherichia coli. Role of 2-oxoglutarate,” European Journal of Biochemistry, vol. 202, no. 3, pp. 1321–1325, 1991. View at Publisher · View at Google Scholar
  21. S. Y. Lee, “High cell-density culture of Escherichia coli,” Trends in Biotechnology, vol. 14, no. 3, pp. 98–105, 1996. View at Publisher · View at Google Scholar
  22. J. H. Choi, K. J. Jeong, S. C. Kim, and S. Y. Lee, “Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using the Bacillus sp. endoxylanase signal sequence,” Applied Microbiology and Biotechnology, vol. 53, no. 6, pp. 640–645, 2000. View at Publisher · View at Google Scholar
  23. K. J. Jeong and S. Y. Lee, “High-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its purification,” Applied and Environmental Microbiology, vol. 65, no. 7, pp. 3027–3032, 1999. View at Google Scholar
  24. V. Chauhan, A. Singh, S. M. Waheed, S. Singh, and R. Bhatnagar, “Constitutive expression of protective antigen gene of Bacillus anthracis in Escherichia coil,” Biochemical and Biophysical Research Communications, vol. 283, no. 2, pp. 308–315, 2001. View at Publisher · View at Google Scholar
  25. K. R. Emslie, J. M. Miller, M. B. Slade, P. R. Dormitzer, H. B. Greenberg, and K. L. Williams, “Expression of the rotavirus SA11 protein VP7 in the simple eukaryote Dictyostelium discoideum,” Journal of Virology, vol. 69, no. 3, pp. 1747–1754, 1995. View at Google Scholar