Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 437143, 18 pages
http://dx.doi.org/10.1155/2010/437143
Research Article

Proteomic Studies of Cholangiocarcinoma and Hepatocellular Carcinoma Cell Secretomes

1Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
2Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
3Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
4Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
5Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

Received 1 July 2009; Accepted 28 September 2009

Academic Editor: Helen J. Cooper

Copyright © 2010 Chantragan Srisomsap et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Sonakul, C. Koompirochana, K. Chinda, and T. Stitnimakarn, “Hepatic carcinoma with opisthorchiasis,” The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 9, no. 2, pp. 215–219, 1978. View at Google Scholar · View at Scopus
  2. S. B. Reddy and T. Patel, “Current approaches to the diagnosis and treatment of cholangiocarcinoma,” Current Gastroenterology Reports, vol. 8, no. 1, pp. 30–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. L. Ong, A. Sachdeva, G. Garcea et al., “Elevation of carbohydrate antigen 19.9 in benign hepatobiliary conditions and its correlation with serum bilirubin concentration,” Digestive Diseases and Sciences, vol. 53, no. 12, pp. 3213–3217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. B. E. Van Beers, “Diagnosis of cholangiocarcinoma,” HPB, vol. 10, no. 2, pp. 87–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Sell and H. A. Dunsford, “Evidence for the stem cell origin of hepatocellular carcinoma and cholangiocarcinoma,” American Journal of Pathology, vol. 134, no. 6, pp. 1347–1363, 1989. View at Google Scholar · View at Scopus
  6. C. Srisomsap, P. Sawangareetrakul, P. Subhasitanont et al., “Proteomic analysis of cholangiocarcinoma cell line,” Proteomics. Clinical Applications, vol. 4, no. 4, pp. 1135–1144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Srisomsap, P. Subhasitanont, P. Sawangareetrakul et al., “Comparison of membrane-associated proteins in human cholangiocarcinoma and hepatocellular carcinoma cell lines,” Proteomics. Clinical Applications, vol. 1, no. 1, pp. 89–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Ladunga, “Large-scale predictions of secretory proteins from mammalian genomic and EST sequences,” Current Opinion in Biotechnology, vol. 11, no. 1, pp. 13–18, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Zwickl, E. Traxler, S. Staettner et al., “A novel technique to specifically analyze the secretome of cells and tissues,” Electrophoresis, vol. 26, no. 14, pp. 2779–2785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Lou, T. Xiao, K. Zhao et al., “Cathepsin D is secreted from M-BE cells: its potential role as a biomarker of lung cancer,” Journal of Proteome Research, vol. 6, no. 3, pp. 1083–1092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. N. Perera, H. S. Spalding, S. I. Mohammed, and I. G. Camarillo, “Identification of proteins secreted from leptin stimulated MCF-7 breast cancer cells: a dual proteomic approach,” Experimental Biology and Medicine, vol. 233, no. 6, pp. 708–720, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Mlynarek, R. L. Balys, J. Su, M. P. Hier, M. J. Black, and M. A. Alaoui-Jamali, “A cell proteomic approach for the detection of secretable biomarkers of invasiveness in oral squamous cell carcinoma,” Archives of Otolaryngology, vol. 133, no. 9, pp. 910–918, 2007. View at Google Scholar · View at Scopus
  13. F. Mbeunkui, O. Fodstad, and L. K. Pannell, “Secretory protein enrichment and analysis: an optimized approach applied on cancer cell lines using 2D LC-MS/MS,” Journal of Proteome Research, vol. 5, no. 4, pp. 899–906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Kulasingam and E. P. Diamandis, “Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets,” Molecular & Cellular Proteomics, vol. 6, no. 11, pp. 1997–2011, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C.-C. Wu, K.-Y. Chien, N.-M. Tsang et al., “Cancer cell-secreted proteomes as a basis for searching potential tumor markers: nasopharyngeal carcinoma as a model,” Proteomics. Clinical Applications, vol. 5, no. 12, pp. 3173–3182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. H.-Y. Wu, Y.-H. Chang, Y.-C. Chang, and P.-C. Liao, “Proteomics analysis of nasopharyngeal carcinoma cell secretome using a hollow fiber culture system and mass spectrometry,” Journal of Proteome Research, vol. 8, no. 1, pp. 380–389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Sirisinha, T. Tengchaisri, S. Boonpucknavig et al., “Identification and potential use of a soluble tumor antigen for the detection of liver-fluke-associated cholangiocarcinoma induced in a hamster model,” Asian Pacific Journal of Allergy & Immunology, vol. 9, pp. 153–157, 1991. View at Google Scholar
  18. K. Laohathai and N. Bhamarapravati, “Culturing of human hepatocellular carcinoma. A simple and reproducible method,” American Journal of Pathology, vol. 118, no. 2, pp. 203–208, 1985. View at Google Scholar · View at Scopus
  19. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  20. T. Zakarias, J. Bunkenborg, M. Gronborg et al., “A proteomic analysis of human bile,” Molecular & Cellular Proteomics, vol. 3, no. 7, pp. 715–728, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Giannelli, E. Fransvea, C. Bergamini, F. Marinosci, and S. Antonaci, “Laminin-5 chains are expressed differentially in metastatic and nonmetastatic hepatocellular carcinoma,” Clinical Cancer Research, vol. 9, no. 10, pp. 3684–3691, 2003. View at Google Scholar · View at Scopus
  22. S. Akimoto, Y. Nakanishi, M. Sakamoto, Y. Kanai, and S. Hirohashi, “Laminin 5 β3 and γ 2 chains are frequently coexpressed in cancer cells,” Pathology International, vol. 54, no. 9, pp. 688–692, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Aishima, S. Matsuura, T. Terashi et al., “Aberrant expression of laminin gamma 2 chain and its prognostic significance in intrahepatic cholangiocarcinoma according to growth morphology,” Modern Pathology, vol. 17, no. 8, pp. 938–945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Vallacchi, M. Daniotti, F. Ratti et al., “CCN3/nephroblastoma overexpressed matricellular protein regulates integrin expression, adhesion, and dissemination in melanoma,” Cancer Research, vol. 68, no. 3, pp. 715–723, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Triebel, J. Bläser, H. Reinke, and H. Tschesche, “A 25 kDa α2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase,” FEBS Letters, vol. 314, no. 3, pp. 386–388, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Tong, A. B. Kunnumakkara, H. Wang et al., “Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer,” Cancer Research, vol. 68, no. 15, pp. 6100–6108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. E. Lai Cheong, V. Wessagowit, and J. A. McGrath, “Molecular abnormalities of the desmosomal protein desmoplakin in human disease,” Clinical and Experimental Dermatology, vol. 30, no. 3, pp. 261–266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Berchem, M. Glondu, M. Gleizes et al., “Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis,” Oncogene, vol. 21, no. 38, pp. 5951–5955, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Beaujouin and E. Liaudet-Coopman, “Cathepsin D overexpressed by cancer cells can enhance apoptosis-dependent chemo-sensitivity independently of its catalytic activity,” Advances in Experimental Medicine and Biology, vol. 617, pp. 453–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Suttiprapa, J. Mulvenna, N. T. Huong et al., “Ov-APR-1, an aspartic protease from the carcinogenic liver fluke, Opisthorchis viverrini: functional expression, immunolocalization and subsite specificity,” The International Journal of Biochemistry & Cell Biology, vol. 41, no. 5, pp. 1148–1156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Gerke and S. E. Moss, “Annexins: from structure to function,” Physiological Reviews, vol. 82, no. 2, pp. 331–371, 2002. View at Google Scholar · View at Scopus
  32. V. Gerke, C. E. Creutz, and S. E. Moss, “Annexins: linking Ca2+ signalling to membrane dynamics,” Nature Reviews Molecular Cell Biology, vol. 6, no. 6, pp. 449–461, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Alfonso, M. Cañamero, F. Fernández-Carbonié, A. Núñez, and J. I. Casal, “Proteome analysis of membrane fractions in colorectal carcinomas by using 2D-DIGE saturation labeling,” Journal of Proteome Research, vol. 7, no. 10, pp. 4247–4255, 2008. View at Publisher · View at Google Scholar · View at Scopus