Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 607084, 13 pages
http://dx.doi.org/10.1155/2010/607084
Review Article

Accelerated Atherosclerosis in Systemic Lupus Erythematosus: Role of Proinflammatory Cytokines and Therapeutic Approaches

1Unidad de Investigación, Hospital Universitario Reina Sofia, Instituto de Investigacion Biomédica de Córdoba (IMIBIC), E-14004 Córdoba, Spain
2Hospital Virgen de la Victoria, Fundación IMABIS, E-29010 Málaga, Spain
3Lupus Research Unit, St Thomas Hospital, London SE1 7EH, UK

Received 15 January 2010; Revised 21 June 2010; Accepted 26 July 2010

Academic Editor: Timothy B. Niewold

Copyright © 2010 Chary López-Pedrera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. P. D'Cruz, M. A. Khamashta, and G. R. Hughes, “Systemic lupus erythematosus,” The Lancet, vol. 369, no. 9561, pp. 587–596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Petri, “Detection of coronary artery disease and the role of traditional risk factors in the Hopkins Lupus Cohort,” Lupus, vol. 9, no. 3, pp. 170–175, 2000. View at Google Scholar · View at Scopus
  3. N. Bassi, A. Ghirardello, L. Iaccarino et al., “OxLDL/β2GPI-anti-oxLDL/β2GPI complex and atherosclerosis in SLE patients,” Autoimmunity Reviews, vol. 7, no. 1, pp. 52–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Shoenfeld, R. Gerli, A. Doria et al., “Accelerated atherosclerosis in autoimmune rheumatic diseases,” Circulation, vol. 112, no. 21, pp. 3337–3347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Matsuura, K. Kobayashi, and L. R. Lopez, “Preventing autoimmune and infection triggered atherosclerosis for an enduring healthful lifestyle,” Autoimmunity Reviews, vol. 7, no. 3, pp. 214–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. Xu, G. Schett, H. Perschinka et al., “Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population,” Circulation, vol. 102, no. 1, pp. 14–20, 2000. View at Google Scholar · View at Scopus
  7. K. Kobayashi, M. Kishi, T. Atsumi et al., “Circulating oxidized LDL forms complexes with β 2-glycoprotein I: implication as an atherogenic autoantigen,” Journal of Lipid Research, vol. 44, no. 4, pp. 716–726, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Avalos, Y. H. Rho, C. P. Chung, and C. M. Stein, “Atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus,” Clinical and Experimental Rheumatology, vol. 26, supplement 51, pp. S5–S13, 2008. View at Google Scholar · View at Scopus
  9. S. I. van Leuven, J. J. P. Kastelein, D. P. D'Cruz, G. R. Hughes, and E. S. Stroes, “Atherogenesis in rheumatology,” Lupus, vol. 15, no. 3, pp. 117–121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. L. E. Full, C. Ruisanchez, and C. Monaco, “The inextricable link between atherosclerosis and prototypical inflammatory diseases rheumatoid arthritis and systemic lupus erythematosus,” Arthritis Research & Therapy, vol. 11, no. 2, pp. 217–226, 2009. View at Google Scholar · View at Scopus
  11. A. H. Sprague and R. A. Khalil, “Inflammatory cytokines in vascular dysfunction and vascular disease,” Biochemical Pharmacology, vol. 78, no. 6, pp. 539–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Tedgui and Z. Mallat, “Cytokines in atherosclerosis: pathogenic and regulatory pathways,” Physiological Reviews, vol. 86, no. 2, pp. 515–581, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. V. C. Mehra, V. S. Ramgolam, and J. R. Bender, “Cytokines and cardiovascular disease,” Journal of Leukocyte Biology, vol. 78, no. 4, pp. 805–818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. L. Young, P. Libby, and U. Schönbeck, “Cytokines in the pathogenesis of atherosclerosis,” Thrombosis and Haemostasis, vol. 88, no. 4, pp. 554–567, 2002. View at Google Scholar · View at Scopus
  16. B. R. Lauwerys and F. A. Houssiau, “Involvement of cytokines in the pathogenesis of systemic lupus erythematosus,” Advances in Experimental Medicine and Biology, vol. 520, pp. 237–245, 2003. View at Google Scholar · View at Scopus
  17. P. Y. Lee, Y. Li, H. B. Richards et al., “Type I interferon as a novel risk factor for endothelial progenitor cell depletion and endothelial dysfunction in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 56, no. 11, pp. 3759–3769, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. F. Denny, S. Thacker, H. Mehta et al., “Interferon-α promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis,” Blood, vol. 110, no. 8, pp. 2907–2915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Csiszár, GY. Nagy, P. Gergely, T. Pozsonyi, and É. Pócsik, “Increased interferon-gamma (IFN-γ), IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE),” Clinical and Experimental Immunology, vol. 122, no. 3, pp. 464–470, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Mühl and J. Pfeilschifter, “Anti-inflammatory properties of pro-inflammatory interferon-γ,” International Immunopharmacology, vol. 3, no. 9, pp. 1247–1255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Ehrt, D. Schnappinger, S. Bekiranov et al., “Reprogramming of the macrophage transcriptome in response to interferon-γ and mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase,” Journal of Experimental Medicine, vol. 194, no. 8, pp. 1123–1140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. J. E. McLaren and D. P. Ramji, “Interferon gamma: a master regulator of atherosclerosis,” Cytokine and Growth Factor Reviews, vol. 20, no. 2, pp. 125–135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Schneider, F. MacKay, V. Steiner et al., “BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth,” Journal of Experimental Medicine, vol. 189, no. 11, pp. 1747–1756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. P. A. Moore, O. Belvedere, A. Orr et al., “BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator,” Science, vol. 285, no. 5425, pp. 260–263, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. H.-B. Shu and H. Johnson, “B cell maturation protein is a receptor for the tumor necrosis factor family member TALL-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 16, pp. 9156–9161, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Mukhopadhyay, J. Ni, Y. Zhai, G.-L. Yu, and B. B. Aggarwal, “Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-κB, and c-jun NH2-terminal kinase,” Journal of Biological Chemistry, vol. 274, no. 23, pp. 15978–15981, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. M. B. Litinskiy, B. Nardelli, D. M. Hilbert et al., “DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL,” Nature Immunology, vol. 3, no. 9, pp. 822–829, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Nardelli, O. Belvedere, V. Roschke et al., “Synthesis and release of B-lymphocyte stimulator from myeloid cells,” Blood, vol. 97, no. 1, pp. 198–204, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Lavie, C. Miceli-Richard, J. Quillard, S. Roux, P. Leclerc, and X. Mariette, “Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjogren’s syndrome,” Journal of Pathology, vol. 202, no. 4, pp. 496–502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Scapini, B. Nardelli, G. Nadali et al., “G-CSF-stimulated neutrophils are a prominent source of functional BLyS,” Journal of Experimental Medicine, vol. 197, no. 3, pp. 297–302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. C. A. Ogden, J. D. Pound, B. K. Batth et al., “Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt's lymphoma,” Journal of Immunology, vol. 174, no. 5, pp. 3015–3023, 2005. View at Google Scholar · View at Scopus
  32. P. Rieckmann, J. M. Tuscano, and J. H. Kehrl, “Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in B-lymphocyte function,” Methods, vol. 11, no. 1, pp. 128–132, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Vanden Berghe, L. Vermeulen, G. De Wilde, K. De Bosscher, E. Boone, and G. Haegeman, “Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6,” Biochemical Pharmacology, vol. 60, no. 8, pp. 1185–1195, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. A. N. Theofilopoulos, S. Koundouris, D. H. Kono, and B. R. Lawson, “The role of IFN-γ in systemic erythematosus: a challenge tothe Th1/Th2 paradigm in autoimmunity,” Arthritis Research, vol. 3, no. 3, pp. 136–141, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. A. K. Palucka, J. Banchereau, P. Blanco, and V. Pascual, “The interplay of dendritic cell subsets in systemic lupus erythematosus,” Immunology and Cell Biology, vol. 80, no. 5, pp. 484–488, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Svenungsson, G.-Z. Fei, K. Jensen-Urstad, U. de Faire, A. Hamsten, and J. Frostegård, “TNF-α: a link between hypertriglyceridaemia and inflammation in SLE patients with cardiovascular disease,” Lupus, vol. 12, no. 6, pp. 454–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. H. Rho, C. P. Chung, A. Oeser et al., “Novel cardiovascular risk factors in premature coronary atherosclerosis associated with systemic lupus erythematosus,” Journal of Rheumatology, vol. 35, no. 9, pp. 1789–1794, 2008. View at Google Scholar · View at Scopus
  38. M. J. Roman, B.-A. Shanker, A. Davis et al., “Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus,” The New England Journal of Medicine, vol. 349, no. 25, pp. 2399–2406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. Horwitz and C. O. Jacob, “The cytokine network in the pathogenesis of systemic lupus erythematosus and possible therapeutic implications,” Springer Seminars in Immunopathology, vol. 16, no. 2-3, pp. 181–200, 1994. View at Google Scholar · View at Scopus
  40. P. M. Ridker, C. H. Hennekens, J. E. Buring, and N. Rifai, “C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women,” The New England Journal of Medicine, vol. 342, no. 12, pp. 836–843, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. P. E. Spronk, E. J. ter Borg, P. C. Limburg, and C. G. M. Kallenberg, “Plasma concentration of IL-6 in systemic lupus erythematosus; an indicator of disease activity?” Clinical and Experimental Immunology, vol. 90, no. 1, pp. 106–110, 1992. View at Google Scholar · View at Scopus
  42. O. Shovman, B. Gilburd, and Y. Shoenfeld, “The role of inflammatory cytokines in the pathogenesis of systemic lupus erythematosus-related atherosclerosis: a novel target for treatment?” Journal of Rheumatology, vol. 33, no. 3, pp. 445–447, 2006. View at Google Scholar · View at Scopus
  43. T. Korn, M. Oukka, V. Kuchroo, and E. Bettelli, “Th17 cells: effector T cells with inflammatory properties,” Seminars in Immunology, vol. 19, no. 6, pp. 362–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Laan, J. Lötvall, K. F. Chung, and A. Lindén, “IL-17-induced cytokine release in human bronchial epithelial cells in vitro: role of mitogen-activated protein (MAP) kinases,” British Journal of Pharmacology, vol. 133, no. 1, pp. 200–206, 2001. View at Google Scholar · View at Scopus
  45. A. M. Woltman, S. De Haij, J. G. Boonstra, S. J. P. Gobin, M. R. Daha, and C. Van Kooten, “Interleukin-17 and CD40-Ligand synergistically enhance cytokine and chemokine production by renal epithelial cells,” Journal of the American Society of Nephrology, vol. 11, no. 11, pp. 2044–2055, 2000. View at Google Scholar · View at Scopus
  46. J. Witowski, K. Pawlaczyk, A. Breborowicz et al., “IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GROα chemokine from mesothelial cells,” Journal of Immunology, vol. 165, no. 10, pp. 5814–5821, 2000. View at Google Scholar · View at Scopus
  47. M. J. Ruddy, F. Shen, J. B. Smith, A. Sharma, and S. L. Gaffen, “Interleukin-17 regulates expression of the CXC chemokine LIX/CXCL5 in osteoblasts: implications for inflammation and neutrophil recruitment,” Journal of Leukocyte Biology, vol. 76, no. 1, pp. 135–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Agarwal, R. Misra, and A. Aggarwal, “Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases,” Journal of Rheumatology, vol. 35, no. 3, pp. 515–519, 2008. View at Google Scholar · View at Scopus
  49. C. Albanesi, A. Cavani, and G. Girolomoni, “IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-γ and TNF-α,” Journal of Immunology, vol. 162, no. 1, pp. 494–502, 1999. View at Google Scholar · View at Scopus
  50. P. Schwarzenberger, W. Huang, Y. Peng et al., “Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis,” Journal of Immunology, vol. 164, no. 9, pp. 4783–4789, 2000. View at Google Scholar · View at Scopus
  51. X.-Y. Cai, C. P. Gommoll Jr., L. Justice, S. K. Narula, and J. S. Fine, “Regulation of granulocyte colony-stimulating factor gene expression by interleukin-17,” Immunology Letters, vol. 62, no. 1, pp. 51–58, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Laan, Z.-H. Cui, H. Hoshino et al., “Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways,” Journal of Immunology, vol. 162, no. 4, pp. 2347–2352, 1999. View at Google Scholar · View at Scopus
  53. J. Maertzdorf, A. D. M. E. Osterhaus, and G. M. G. M. Verjans, “IL-17 expression in human herpetic stromal keratitis: modulatory effects on chemokine production by corneal fibroblasts,” Journal of Immunology, vol. 169, no. 10, pp. 5897–5903, 2002. View at Google Scholar · View at Scopus
  54. R. L. Van Bezooijen, S. E. Papapoulos, and C. W. G. M. Löwik, “Effect of interleukin-17 on nitric oxide production and osteoclastic bone resorption: is there dependency on nuclear factor-κB and receptor activator of nuclear factor κB (RANK)/RANK ligand signaling?” Bone, vol. 28, no. 4, pp. 378–386, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. M. J. Ruddy, G. C. Wong, X. K. Liu et al., “Functional cooperation between interleukin-17 and tumor necrosis factor-α is mediated by CCAAT/enhancer-binding protein family members,” Journal of Biological Chemistry, vol. 279, no. 4, pp. 2559–2567, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Aarvak, M. Chabaud, P. Miossec, and J. B. Natvig, “IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells,” Journal of Immunology, vol. 162, no. 3, pp. 1246–1251, 1999. View at Google Scholar · View at Scopus
  57. C. Lock, G. Hermans, R. Pedotti et al., “Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis,” Nature Medicine, vol. 8, no. 5, pp. 500–508, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. C. K. Wong, L. C. W. Lit, L. S. Tam, E. K. M. Li, P. T. Y. Wong, and C. W. K. Lam, “Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity,” Clinical Immunology, vol. 127, no. 3, pp. 385–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. J. C. Crispín, M. Oukka, G. Bayliss et al., “Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys,” Journal of Immunology, vol. 181, no. 12, pp. 8761–8766, 2008. View at Google Scholar · View at Scopus
  60. S. Shivakumar, G. C. Tsokos, and S. K. Datta, “T cell receptor α/β expressing double-negative (CD4-/CD8-) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis,” Journal of Immunology, vol. 143, no. 1, pp. 103–112, 1989. View at Google Scholar · View at Scopus
  61. R. E. Eid, D. A. Rao, J. Zhou et al., “Interleukin-17 and interferon-γ are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells,” Circulation, vol. 119, no. 10, pp. 1424–1432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. E. F. Morand, M. Leech, and J. Bernhagen, “MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis,” Nature Reviews Drug Discovery, vol. 5, no. 5, pp. 399–411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Zernecke, J. Bernhagen, and C. Weber, “Macrophage migration inhibitory factor in cardiovascular disease,” Circulation, vol. 117, no. 12, pp. 1594–1602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Shimizu, R. N. Mitchell, and P. Libby, “Inflammation and cellular immune responses in abdominal aortic aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 5, pp. 987–994, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Saeland, V. Duvert, I. Moreau, and J. Banchereau, “Human B cell precursors proliferate and express CD23 after CD40 ligation,” Journal of Experimental Medicine, vol. 178, no. 1, pp. 113–120, 1993. View at Google Scholar · View at Scopus
  66. S. Lederman, M. J. Yellin, A. M. Cleary et al., “T-BAM/CD40-L on helper T lymphocytes augments lymphokine-induced B cell Ig isotype switch recombination and rescues B cells from programmed cell death,” Journal of Immunology, vol. 152, no. 5, pp. 2163–2171, 1994. View at Google Scholar · View at Scopus
  67. F. Mach, U. Schönbeck, and P. Libby, “CD40 signaling in vascular cells: a key role in atherosclerosis?” Atherosclerosis, vol. 137, supplement 1, pp. S89–S95, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Mach, U. Schönbeck, G. K. Sukhova et al., “Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 5, pp. 1931–1936, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. U. Schonbeck, F. Mach, G. K. Sukhova et al., “CD40 ligation induces tissue factor expression in human vascular smooth muscle cells,” American Journal of Pathology, vol. 156, no. 1, pp. 7–14, 2000. View at Google Scholar · View at Scopus
  70. A. B. Lee, T. Godfrey, K. G. Rowley et al., “Traditional risk factor assessment does not capture the extent of cardiovascular risk in systemic lupus erythematosus,” Internal Medicine Journal, vol. 36, no. 4, pp. 237–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. R. K. Vakkalanka, C. Woo, K. A. Kirou, M. Koshy, D. Berger, and M. K. Crow, “Elevated levels and functional capacity of soluble CD40 ligand in systemic lupus erythematosus sera,” Arthritis and Rheumatism, vol. 42, no. 5, pp. 871–881, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Yazdany and J. Davis, “The role of CD40 ligand in systemic lupus erythematosus,” Lupus, vol. 13, no. 5, pp. 377–380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Maas, S. Chan, J. Parker et al., “Cutting edge: molecular portrait of human autoimmune disease,” Journal of Immunology, vol. 169, no. 1, pp. 5–9, 2002. View at Google Scholar · View at Scopus
  74. M. K. Crow, S. George, S. A. Paget et al., “Expression of an interferon-alpha gene program in SLE,” Arthritis and Rheumatism, vol. 46, supplement 9, p. S281, 2002. View at Google Scholar
  75. G.-M. Han, S.-L. Chen, N. Shen, S. Ye, C.-D. Bao, and Y.-Y. Gu, “Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray,” Genes and Immunity, vol. 4, no. 3, pp. 177–186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. L. Bennett, A. K. Palucka, E. Arce et al., “Interferon and granulopoiesis signatures in systemic lupus erythematosus blood,” Journal of Experimental Medicine, vol. 197, no. 6, pp. 711–723, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. V. Rus, S. P. Atamas, V. Shustova et al., “Expression of cytokine- and chemokine-related genes in peripheral blood mononuclear cells from lupus patients by cDNA array,” Clinical Immunology, vol. 102, no. 3, pp. 283–290, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. E. C. Baechler, F. M. Batliwalla, G. Karypis et al., “Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2610–2615, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Ishii, H. Onda, A. Tanigawa et al., “Isolation and expression profiling of genes upregulated in the peripheral blood cells of systemic lupus erythematosus patients,” DNA Research, vol. 12, no. 6, pp. 429–439, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. M. K. Crow and J. Wohlgemuth, “Microarray analysis of gene expression in lupus,” Arthritis Research and Therapy, vol. 5, no. 6, pp. 279–287, 2003. View at Google Scholar · View at Scopus
  81. X. Qing and C. Putterman, “Gene expression profiling in the study of the pathogenesis of systemic lupus erythematosus,” Autoimmunity Reviews, vol. 3, no. 7-8, pp. 505–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. K. A. Kirou, C. Lee, S. George et al., “Coordinate overexpression of interferon-α-induced genes in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 50, no. 12, pp. 3958–3967, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. S. L. Musone, K. E. Taylor, T. T. Lu et al., “Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus,” Nature Genetics, vol. 40, no. 9, pp. 1062–1064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. K. L. Graham, L. Y. Lee, J. P. Higgins, L. Steinman, P. J. Utz, and P. P. Ho, “Failure of oral atorvastatin to modulate a murine model of systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 58, no. 7, pp. 2098–2104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. E. F. Remmers, R. M. Plenge, A. T. Lee et al., “STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus,” The New England Journal of Medicine, vol. 357, no. 10, pp. 977–986, 2007. View at Google Scholar
  86. A. L. Sestak, S. K. Nath, A. H. Sawalha, and J. B. Harley, “Current status of lupus genetics,” Arthritis Research and Therapy, vol. 9, no. 3, Article ID 210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. E. J. Pavón, P. Muñoz, A. Lario et al., “Proteomic analysis of plasma from patients with systemic lupus erythematosus: increased presence of haptoglobin alpha2 polypeptide chains over the alpha1 isoforms,” Proteomics, vol. 6, supplement 1, pp. S282–S292, 2006. View at Google Scholar · View at Scopus
  88. M. Melamed-Frank, O. Lache, B. I. Enav et al., “Structure-function analysis of the antioxidant properties of haptoglobin,” Blood, vol. 98, no. 13, pp. 3693–3698, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. M. R. Langlois and J. R. Delanghe, “Biological and clinical significance of haptoglobin polymorphism in humans,” Clinical Chemistry, vol. 42, no. 10, pp. 1589–1600, 1996. View at Google Scholar · View at Scopus
  90. A. P. Levy, J. E. Levy, S. Kalet-Litman et al., “Haptoglobin genotype is a determinant of iron, lipid peroxidation, and macrophage accumulation in the atherosclerotic plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 134–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Guetta, M. Strauss, N. S. Levy, L. Fahoum, and A. P. Levy, “Haptoglobin genotype modulates the balance of Th1/Th2 cytokines produced by macrophages exposed to free hemoglobin,” Atherosclerosis, vol. 191, no. 1, pp. 48–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Shor, M. Boaz, D. Gavish, J. Wainshtein, Z. Matas, and M. Shargorodsky, “Relation of haptoglobin phenotype to early vascular changes in patients with diabetes mellitus,” American Journal of Cardiology, vol. 100, no. 12, pp. 1767–1770, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Petri, R. Roubenoff, G. E. Dallal, M. R. Nadeau, J. Selhub, and I. H. Rosenberg, “Plasma homocysteine as a risk factor for atherothrombotic events in systemic lupus erythematosus,” The Lancet, vol. 348, no. 9035, pp. 1120–1124, 1996. View at Publisher · View at Google Scholar · View at Scopus
  94. S. L. Westlake, A. N. Colebatch, J. Baird et al., “The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review,” Rheumatology, vol. 49, no. 2, pp. 295–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. S. I. van Leuven, J. J. P. Kastelein, A. C. Allison, M. R. Hayden, and E. S. G. Stroes, “Mycophenolate mofetil (MMF): firing at the atherosclerotic plaque from different angles?” Cardiovascular Research, vol. 69, no. 2, pp. 341–347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. F. Monneaux and S. Muller, “Molecular therapies for systemic lupus erythematosus: clinical trials and future prospects,” Arthritis Research & Therapy, vol. 11, no. 3, pp. 234–243, 2009. View at Google Scholar
  97. Y. Yao, L. Richman, B. W. Higgs et al., “Neutralization of interferon-α/β-inducible genes and downstream effect in a phase I trial of an anti-interferon-α monoclonal antibody in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 60, no. 6, pp. 1785–1796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. D. Hürlimann, A. Forster, G. Noll et al., “Anti-tumor necrosis factor-α treatment improves endothelial function in patients with rheumatoid arthritis,” Circulation, vol. 106, no. 17, pp. 2184–2187, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Gonzalez-Juanatey, J. Llorca, C. Garcia-Porrua, J. Martin, and M. A. Gonzalez-Gay, “Effect of anti-tumor necrosis factor α therapy on the progression of subclinical atherosclerosis in severe rheumatoid arthritis,” Arthritis Care and Research, vol. 55, no. 1, pp. 150–153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. M. A. Gonzales-Gay, M. T. Garcia-Unzueta, J. M. De Matias et al., “Influence of anti-TNF-α infliximab therapy on adhesion molecules associated with atherogenesis in patients with rheumatoid arthritis,” Clinical and Experimental Rheumatology, vol. 24, no. 4, pp. 373–379, 2006. View at Google Scholar · View at Scopus
  101. D. N. Kiortsis, A. K. Mavridis, S. Vasakos, S. N. Nikas, and A. A. Drosos, “Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis,” Annals of the Rheumatic Diseases, vol. 64, no. 5, pp. 765–766, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Popa, F. H. J. van den Hoogen, T. R. D. J. Radstake et al., “Modulation of lipoprotein plasma concentrations during long-term anti-TNF therapy in patients with active rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 66, no. 11, pp. 1503–1507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. G. E. McKellar, D. W. McCarey, N. Sattar, and I. B. McInnes, “Role for TNF in atherosclerosis? Lessons from autoimmune disease,” Nature Reviews in Cardiology, vol. 6, no. 6, pp. 410–417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Y. Karim, C. N. Pisoni, and M. A. Khamashta, “Update on immunotherapy for systemic lupus erythematosus—what's hot and what's not!,” Rheumatology, vol. 48, no. 4, pp. 332–341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Aringer, W. B. Graninger, G. Steiner, and J. S. Smolen, “Safety and efficacy of tumor necrosis factor α blockade in systemic lupus erythematosus: an open-label study,” Arthritis and Rheumatism, vol. 50, no. 10, pp. 3161–3169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Aringer, G. Steiner, W. B. Graninger, E. Höfler, C. W. Steiner, and J. S. Smolen, “Effects of short-term infliximab therapy on autoantibodies in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 56, no. 1, pp. 274–279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Ramos-Casals, P. Brito-Zerón, M.-J. Soto, M.-J. Cuadrado, and M. A. Khamashta, “Autoimmune diseases induced by TNF-targeted therapies,” Best Practice and Research: Clinical Rheumatology, vol. 22, no. 5, pp. 847–861, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. L. Llorente, Y. Richaud-Patin, C. Garcia-Padilla et al., “Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 43, no. 8, pp. 1790–1800, 2000. View at Publisher · View at Google Scholar · View at Scopus
  109. H. Le Buanec, L. Delavallée, N. Bessis et al., “TNFα kinoid vaccination-induced neutralizing antibodies to TNFα protect mice from autologous TNFα-driven chronic and acute inflammation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 51, pp. 19442–19447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. R. P. Taylor and M. A. Lindorfer, “Drug Insight: the mechanism of action of rituximab in autoimmune disease—the immune complex decoy hypothesis,” Nature Clinical Practice Rheumatology, vol. 3, no. 2, pp. 86–95, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. T. Cerny, B. Borisch, M. Introna, P. Johnson, and A. L. Rose, “Mechanism of action of rituximab,” Anti-Cancer Drugs, vol. 13, supplement 2, pp. S3–S10, 2002. View at Google Scholar · View at Scopus
  112. D. G. Maloney, B. Smith, and A. Rose, “Rituximab: mechanism of action and resistance,” Seminars in Oncology, vol. 29, no. 1, supplement 2, pp. 2–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  113. M. J. Leandro, G. Cambridge, J. C. Edwards, M. R. Ehrenstein, and D. A. Isenberg, “B-cell depletion in the treatment of patients with systemic lupus erythematosus: a longitudinal analysis of 24 patients,” Rheumatology, vol. 44, no. 12, pp. 1542–1545, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. R. J. Looney, J. H. Anolik, D. Campbell et al., “B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab,” Arthritis and Rheumatism, vol. 50, no. 8, pp. 2580–2589, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Vigna-Perez, B. Hernández-Castro, O. Paredes-Saharopulos et al., “Clinical and immunological effects of Rituximab in patients with lupus nephritis refractory to conventional therapy: a pilot study,” Arthritis Research and Therapy, vol. 8, no. 3, Article ID R83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. P. P. Sfikakis, J. N. Boletis, S. Lionaki et al., “Remission of proliferative lupus nephritis following B cell depletion therapy is preceded by down-regulation of the T cell costimulatory molecule CD40 ligand: an open-label trial,” Arthritis and Rheumatism, vol. 52, no. 2, pp. 501–513, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. I. Gunnarsson, B. Sundelin, T. Jónsdóttir, S. H. Jacobson, E. W. Henriksson, and R. F. van Vollenhoven, “Histopathologic and clinical outcome of rituximab treatment in patients with cyclophosphamide-resistant proliferative lupus nephritis,” Arthritis and Rheumatism, vol. 56, no. 4, pp. 1263–1272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Tokunaga, K. Saito, D. Kawabata et al., “Efficacy of rituximab (anti-CD20) for refractory systemic lupus erythematosus involving the central nervous system,” Annals of the Rheumatic Diseases, vol. 66, no. 4, pp. 470–475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. T. Jónsdóttir, I. Gunnarsson, A. Risselada, E. W. Henriksson, L. Klareskog, and R. F. van Vollenhoven, “Treatment of refractory SLE with rituximab plus cyclophosphamide: clinical effects, serological changes, and predictors of response,” Annals of the Rheumatic Diseases, vol. 67, no. 3, pp. 330–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. J. M. Pego-Reigosa, T. Y. Lu, M. F. Fontanillo, V. D. Campo-Pérez, A. Rahman, and D. A. Isenberg, “Long-term improvement of lipid profile in patients with refractory systemic lupus erythematosus treated with B-cell depletion therapy: a retrospective observational study,” Rheumatology, vol. 49, no. 4, pp. 691–696, 2010. View at Google Scholar
  121. D. M. Klinman, D. Tross, S. Klaschik, H. Shirota, and T. Sato, “Therapeutic applications and mechanisms underlying the activity of immunosuppressive oligonucleotides,” Annals of the New York Academy of Sciences, vol. 1175, pp. 80–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. G. Zandman-Goddard, M. Blank, and Y. Shoenfeld, “Intravenous immunoglobulins in systemic lupus erythematosus: from the bench to the bedside,” Lupus, vol. 18, no. 10, pp. 884–888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. Y. Levy, Y. Sherer, A. Ahmed et al., “A study of 20 SLE patients with intravenous immunoglobulin—clinical and serologic response,” Lupus, vol. 8, no. 9, pp. 705–712, 1999. View at Google Scholar · View at Scopus
  124. Ch. Lopez-Pedrera, M. A. Aguirre, P. Ruiz et al., “Global effects of the HMG-CoA Reductase inhibitor Fluvastatin on the procoagulant and proinflammatory features of monocytes from APS patients,” Annals of Rheumatic Diseases, vol. 68, supplement 3, p. 245, 2009. View at Google Scholar
  125. G. A. Ferreira, T. P. Navarro, R. W. Telles, L. E. C. Andrade, and E. I. Sato, “Atorvastatin therapy improves endothelial-dependent vasodilation in patients with systemic lupus erythematosus: an 8 weeks controlled trial,” Rheumatology, vol. 46, no. 10, pp. 1560–1565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. P. J. Kotyla, B. Sliwinska-Kotyla, and E. J. Kucharz, “TNF-α as a potential target in the treatment of systemic lupus erythematosus: a role for the HMG-CoA reductase inhibitor simvastatin,” Journal of Rheumatology, vol. 33, no. 11, pp. 2361–2363, 2006. View at Google Scholar · View at Scopus
  127. G. E. Norby, I. Holme, B. Fellström et al., “Effect of fluvastatin on cardiac outcomes in kidney transplant patients with systemic lupus erythematosus a randomized placebo-controlled study,” Arthritis and Rheumatism, vol. 60, no. 4, pp. 1060–1064, 2009. View at Publisher · View at Google Scholar · View at Scopus