Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 638413, 11 pages
http://dx.doi.org/10.1155/2010/638413
Review Article

Biomarkers for Lupus Nephritis: A Critical Appraisal

Department of Medicine & Geriatrics, Tuen Mun Hospital and Center for Assessment and Treatment of Rheumatic Diseases, Pok Oi Hospital, Hong Kong

Received 5 January 2010; Accepted 22 March 2010

Academic Editor: Charles Via

Copyright © 2010 Chi Chiu Mok. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. C. Mok, S. S. K. Tang, C. H. To, and M. Petri, “Incidence and risk factors of thromboembolism in systemic lupus erythematosus: a comparison of three ethnic groups,” Arthritis and Rheumatism, vol. 52, no. 9, pp. 2774–2782, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. C. C. Mok and S. S. K. Tang, “Incidence and predictors of renal disease in Chinese patients with systemic lupus erythematosus,” American Journal of Medicine, vol. 117, no. 10, pp. 791–795, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. C. Mok, “Prognostic factors in lupus nephritis,” Lupus, vol. 14, no. 1, pp. 39–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Dooley, S. Hogan, C. Jennette, and R. Falk, “Cyclophosphamide therapy for lupus nephritis: poor renal survival in black Americans,” Kidney International, vol. 51, no. 4, pp. 1188–1195, 1997. View at Google Scholar · View at Scopus
  5. C. C. Mok, “Therapeutic options for resistant Lupus nephritis,” Seminars in Arthritis and Rheumatism, vol. 36, no. 2, pp. 71–81, 2006. View at Google Scholar
  6. C. C. Mok, “Update on emerging drug therapies for systemic lupus erythematosus,” Expert Opinion on Emerging Drugs, vol. 15, pp. 53–70, 2010. View at Google Scholar
  7. B. H. Rovin, D. J. Birmingham, H. N. Nagaraja, C. Y. Yu, and L. A. Hebert, “Biomarker discovery in human SLE nephritis,” Bulletin of the NYU Hospital for Joint Diseases, vol. 65, no. 3, pp. 187–193, 2007. View at Google Scholar · View at Scopus
  8. G. H. Tesch, S. Maifert, A. Schwarting, B. J. Rollins, and V. R. Kelley, “Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(lpr) mice,” Journal of Experimental Medicine, vol. 190, no. 12, pp. 1813–1824, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Hasegawa, M. Kohno, Miho Sasaki et al., “Antagonist of monocyte chemoattractant protein 1 ameliorates the initiation and progression of lupus nephritis and renal vasculitis in MRL/lpr mice,” Arthritis and Rheumatism, vol. 48, no. 9, pp. 2555–2566, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Wada, C. Segawa, S. B. Su et al., “Monitoring urinary levels of monocyte chemotactic and activating factor reflects disease activity of lupus nephritis,” Kidney International, vol. 49, no. 3, pp. 761–767, 1996. View at Google Scholar · View at Scopus
  11. B. H. Rovin, N. Doe, and L. C. Tan, “Monocyte chemoattractant protein-1 levels in patients with glomerular disease,” American Journal of Kidney Diseases, vol. 27, no. 5, pp. 640–646, 1996. View at Google Scholar · View at Scopus
  12. M. Noris, S. Bernasconi, F. Casiraghi et al., “Monocyte chemoattractant protein-1 is excreted in excessive amounts in the urine of patients with lupus nephritis,” Laboratory Investigation, vol. 73, no. 6, pp. 804–809, 1995. View at Google Scholar · View at Scopus
  13. A. N. Kiani, K. Johnson, C. Chen et al., “Urine osteoprotegerin and monocyte chemoattractant protein-1 in lupus nephritis,” Journal of Rheumatology, vol. 36, no. 10, pp. 2224–2230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. H. Rovin, H. Song, D. J. Birmingham, L. A. Hebert, C. Y. Yu, and H. N. Nagaraja, “Urine chemokines as biomarkers of human systemic lupus erythematosus activity,” Journal of the American Society of Nephrology, vol. 16, no. 2, pp. 467–473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Tucci, E. V. Barnes, E. S. Sobel et al., “Strong association of a functional polymorphism in the monocyte chemoattractant protein 1 promoter gene with lupus nephritis,” Arthritis and Rheumatism, vol. 50, no. 6, pp. 1842–1849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Tian, Y. Wang, J. Jia et al., “Urinary levels of RANTES and M-CSF are predictors of lupus nephritis flare,” Inflammation Research, vol. 56, no. 7, pp. 304–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. W. Y. Chan, F. M. M. Lai, E. K. M. Li et al., “The effect of immunosuppressive therapy on the messenger RNA expression of target genes in the urinary sediment of patients with active lupus nephritis,” Nephrology Dialysis Transplantation, vol. 21, no. 6, pp. 1534–1540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Schwartz, J. S. Michaelson, and C. Putterman, “Lipocalin-2, TWEAK, and other cytokines as urinary biomarkers for lupus nephritis,” Annals of the New York Academy of Sciences, vol. 1109, pp. 265–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Mishra, M. A. Qing, A. Prada et al., “Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury,” Journal of the American Society of Nephrology, vol. 14, no. 10, pp. 2534–2543, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Mishra, K. Mori, Q. Ma, C. Kelly, J. Barasch, and P. Devarajan, “Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity,” American Journal of Nephrology, vol. 24, no. 3, pp. 307–315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Trachtman, E. Christen, A. Cnaan et al., “Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury,” Pediatric Nephrology, vol. 21, no. 7, pp. 989–994, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Rubinstein, M. Pitashny, and C. Putterman, “The novel role of neutrophil gelatinase-B associated lipocalin (NGAL)/Lipocalin-2 as a biomarker for lupus nephritis,” Autoimmunity Reviews, vol. 7, no. 3, pp. 229–234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Mishra, C. Dent, R. Tarabishi et al., “Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery,” The Lancet, vol. 365, no. 9466, pp. 1231–1238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Bolignano, A. Lacquaniti, G. Coppolino, S. Campo, A. Arena, and M. Buemi, “Neutrophil gelatinase-associated lipocalin reflects the severity of renal impairment in subjects affected by chronic kidney disease,” Kidney and Blood Pressure Research, vol. 31, no. 4, pp. 255–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Bolignano, V. Donato, G. Coppolino et al., “Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage,” American Journal of Kidney Diseases, vol. 52, no. 3, pp. 595–605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Qing, J. Zavadil, M. B. Crosby et al., “Nephritogenic anti-DNA antibodies regulate gene expression in MRL/lpr mouse glomerular mesangial cells,” Arthritis and Rheumatism, vol. 54, no. 7, pp. 2198–2210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. H. I. Brunner, M. Mueller, C. Rutherford et al., “Urinary neutrophil gelatinase-associated lipocalin as a biomarker of nephritis in childhood-onset systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 54, no. 8, pp. 2577–2584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Pitashny, N. Schwartz, X. Qing et al., “Urinary lipocalin-2 is associated with renal disease activity in human lupus nephritis,” Arthritis and Rheumatism, vol. 56, no. 6, pp. 1894–1903, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Suzuki, K. M. Wiers, M. S. Klein-Gitelman et al., “Neutrophil gelatinase-associated lipocalin as a biomarker of disease activity in pediatric lupus nephritis,” Pediatric Nephrology, vol. 23, no. 3, pp. 403–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. H. Hinze, M. Suzuki, M. Klein-Gitelman et al., “Neutrophil gelatinase-associated lipocalin is a predictor of the course of global and renal childhood-onset systemic lupus erythematosus disease activity,” Arthritis and Rheumatism, vol. 60, no. 9, pp. 2772–2781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Rubinstein, M. Pitashny, and B. Levine, “Urinary neutrophil gelatinase-associated lipocalin as a novel biomarker for disease activity in lupus nephritis,” Rheumatology. In press.
  32. A. Ortiz, A. B. Sanz, B. M. García et al., “Considering TWEAK as a target for therapy in renal and vascular injury,” Cytokine and Growth Factor Reviews, vol. 20, no. 3, pp. 251–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. A. Winkles, “The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting,” Nature Reviews Drug Discovery, vol. 7, no. 5, pp. 411–425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Campbell, C. L. Putterman, H. X. Gao et al., “Proinflammatory effects of Tweak/Fn14 interactions in glomerular mesangial cells,” Journal of Immunology, vol. 176, no. 3, pp. 1889–1898, 2006. View at Google Scholar · View at Scopus
  35. H. X. Gao, S. R. Campbell, L. C. Burkly et al., “TNF-like weak inducer of apoptosis (TWEAK) induces inflammatory and proliferative effects in human kidney cells,” Cytokine, vol. 46, no. 1, pp. 24–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. U. S. Gaipl, R. E. Voll, A. Sheriff, S. Franz, J. R. Kalden, and M. Herrmann, “Impaired clearance of dying cells in systemic lupus erythematosus,” Autoimmunity Reviews, vol. 4, no. 4, pp. 189–194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. Kaplan, E. E. Lewis, E. A. Shelden et al., “The apoptotic ligands TRAIL, TWEAK, and fas ligand mediate monocyte death induced by autologous lupus T cells,” Journal of Immunology, vol. 169, no. 10, pp. 6020–6029, 2002. View at Google Scholar · View at Scopus
  38. N. Schwartz, L. Su, L. C. Burkly et al., “Urinary TWEAK and the activity of lupus nephritis,” Journal of Autoimmunity, vol. 27, no. 4, pp. 242–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Schwartz, T. Rubinstein, L. C. Burkly et al., “Urinary TWEAK as a biomarker of lupus nephritis: a multicenter cohort study,” Arthritis Research & Therapy, vol. 11, no. 5, p. R143, 2009. View at Google Scholar
  40. M. Suzuki, G. F. Ross, K. Wiers et al., “Identification of a urinary proteomic signature for lupus nephritis in children,” Pediatric Nephrology, vol. 22, no. 12, pp. 2047–2057, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Mosley, F. W. Tam, R. J. Edwards, J. Crozier, C. D. Pusey, and L. Lightstone, “Urinary proteomic profiles distinguish between active and inactive lupus nephritis,” Rheumatology, vol. 45, no. 12, pp. 1497–1504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Suzuki, K. Wiers, E. B. Brooks et al., “Initial validation of a novel protein biomarker panel for active pediatric lupus nephritis,” Pediatric Research, vol. 65, no. 5, pp. 530–536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Malyszko and M. Mysliwiec, “Hepcidin in anemia and inflammation in chronic kidney disease,” Kidney and Blood Pressure Research, vol. 30, no. 1, pp. 15–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Nemeth, E. V. Valore, M. Territo, G. Schiller, A. Lichtenstein, and T. Ganz, “Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein,” Blood, vol. 101, no. 7, pp. 2461–2463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Lee, H. Peng, T. Gelbart, L. Wang, and E. Beutler, “Regulation of hepcidin transcription by interleukin-1 and interleukin-6,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 6, pp. 1906–1910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Zhang, M. Jin, H. Wu et al., “Biomarkers of lupus nephritis determined by serial urine proteomics,” Kidney International, vol. 74, no. 6, pp. 799–807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Tsirogianni, E. Pipi, and K. Soufleros, “Relevance of anti-C1q autoantibodies to lupus nephritis,” Annals of the New York Academy of Sciences, vol. 1173, pp. 243–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Trendelenburg, “Antibodies against C1q in patients with systemic lupus erythematosus,” Springer Seminars in Immunopathology, vol. 27, no. 3, pp. 276–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. M. A. Seelen, L. A. Trouw, and M. R. Daha, “Diagnostic and prognostic significance of anti-C1q antibodies in systemic lupus erythematosus,” Current Opinion in Nephrology and Hypertension, vol. 12, no. 6, pp. 619–624, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. A. J. Jesus, C. A. Silva, M. Carneiro-Sampaio et al., “Anti-C1q antibodies in juvenile-onset systemic lupus erythematosus,” Annals of the New York Academy of Sciences, vol. 1173, pp. 235–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. C. E. H. Siegert, M. R. Daha, C. M. E. S. Tseng, I. E. M. Coremans, L. A. van Es, and F. C. Breedveld, “Predictive value of IgG autoantibodies against C1q for nephritis in systemic lupus erythematosus,” Annals of the Rheumatic Diseases, vol. 52, no. 12, pp. 851–856, 1993. View at Google Scholar · View at Scopus
  52. C. G. Moura, I. Lima, L. Barbosa et al., “Anti-C1q antibodies: association with nephritis and disease activity in systemic lupus erythematosus,” Journal of Clinical Laboratory Analysis, vol. 23, no. 1, pp. 19–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. Q. Y. Fang, F. Yu, Y. Tan et al., “Anti-C1q antibodies and IgG subclass distribution in sera from Chinese patients with lupus nephritis,” Nephrology Dialysis Transplantation, vol. 24, no. 1, pp. 172–178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. R. A. Sinico, A. Radice, M. Ikehata et al., “Anti-C1q autoantibodies in lupus nephritis: prevalence and clinical significance,” Annals of the New York Academy of Sciences, vol. 1050, pp. 193–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Q. Wu, Q. Zhao, X. D. Cui, and W. Zhang, “C1q and anti-C1q antibody levels are correlated with disease severity in Chinese pediatric systemic lupus erythematosus,” Rheumatology International. In press.
  56. M. Mosca, D. Chimenti, F. Pratesi et al., “Prevalence and clinico-serological correlations of anti-a-enolase, anti-C1q, and anti-dsDNA antibodies in patients with systemic lupus erythematosus,” Journal of Rheumatology, vol. 33, no. 4, pp. 695–697, 2006. View at Google Scholar · View at Scopus
  57. P. Horák, Z. Hermanová, J. Zadrazil et al., “C1q complement component and antibodies reflect SLE activity and kidney involvement,” Clinical Rheumatology, vol. 25, no. 4, pp. 532–536, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Moroni, M. Trendelenburg, N. Del Papa et al., “Anti-C1q antibodies may help in diagnosing a renal flare in lupus nephritis,” American Journal of Kidney Diseases, vol. 37, no. 3, pp. 490–498, 2001. View at Google Scholar · View at Scopus
  59. M. Trendelenburg, M. Lopez-Trascasa, E. Potlukova et al., “High prevalence of anti-C1q antibodies in biopsy-proven active lupus nephritis,” Nephrology Dialysis Transplantation, vol. 21, no. 11, pp. 3115–3121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. R. A. Sinico, L. Rimoldi, A. Radice, L. Bianchi, B. Gallelli, and G. Moroni, “Anti-C1q autoantibodies in lupus nephritis,” Annals of the New York Academy of Sciences, vol. 1173, pp. 47–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. O. C. Meyer, P. Nicaise-Roland, N. Cadoudal et al., “Anti-C1q antibodies antedate patent active glomerulonephritis in patients with systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 11, no. 3, article R87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Moroni, A. Radice, G. Giammarresi et al., “Are laboratory tests useful for monitoring the activity of lupus nephritis? A 6-year prospective study in a cohort of 228 patients with lupus nephritis,” Annals of the Rheumatic Diseases, vol. 68, no. 2, pp. 234–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. A. D. C. Hoftman, L. Q. Tai, S. Tze, D. Seligson, R. A. Gatti, and D. K. McCurdy, “MAGE-B2 autoantibody: a new biomarker for pediatric systemic lupus erythematosus,” Journal of Rheumatology, vol. 35, no. 12, pp. 2430–2438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Tan, F. Yu, H. Yang, M. Chen, Qiying Fang, and M. H. Zhao, “Autoantibodies against monomeric C-reactive protein in sera from patients with lupus nephritis are associated with disease activity and renal tubulointerstitial lesions,” Human Immunology, vol. 69, no. 12, pp. 840–844, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Tucci, L. Lombardi, H. B. Richards, F. Dammacco, and F. Silvestris, “Overexpression of interleukin-12 and T helper 1 predominance in lupus nephritis,” Clinical and Experimental Immunology, vol. 154, no. 2, pp. 247–254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. Q. Fu, X. Chen, H. Cui et al., “Association of elevated transcript levels of interferon-inducible chemokines with disease activity and organ damage in systemic lupus erythematosus patients,” Arthritis Research and Therapy, vol. 10, no. 5, article R112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. P. E. Morgan, A. D. Sturgess, A. Hennessy, and M. J. Davies, “Serum protein oxidation and apolipoprotein CIII levels in people with systemic lupus erythematosus with and without nephritis,” Free Radical Research, vol. 41, no. 12, pp. 1301–1312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Sabry, H. Sheashaa, A. El-Husseini, K. El-Dahshan, M. Abdel-Rahim, and S. R. Elbasyouni, “Intercellular adhesion molecules in systemic lupus erythematosus patients with lupus nephritis,” Clinical Rheumatology, vol. 26, no. 11, pp. 1819–1823, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. J. C. Tseng, L. Y. Lu, R. J. Hu et al., “Elevated serum anti-endothelial cell autoantibodies titer is associated with lupus nephritis in patients with systemic lupus erythematosus,” Journal of Microbiology, Immunology and Infection, vol. 40, no. 1, pp. 50–55, 2007. View at Google Scholar · View at Scopus
  70. A. Bruns, S. Bläss, G. Hausdorf, G. R. Burmester, and F. Hiepe, “Nucleosomes are major T and B cell autoantigens in systemic Lupus erythematosus,” Arthritis and Rheumatism, vol. 43, no. 10, pp. 2307–2315, 2000. View at Google Scholar · View at Scopus
  71. S. Koutouzov, A. L. Jeronimo, H. Campos, and Z. Amoura, “Nucleosomes in the pathogenesis of systemic lupus erythematosus,” Rheumatic Disease Clinics of North America, vol. 30, no. 3, pp. 529–558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Kalaaji, K. A. Fenton, E. S. Mortensen et al., “Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis,” Kidney International, vol. 71, no. 7, pp. 664–672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Wang, F. M.-M. Lai, L.-S. Tam et al., “Urinary FOXP3 mRNA in patients with lupus nephritis—relation with disease activity and treatment response,” Rheumatology, vol. 48, no. 7, pp. 755–760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Dhaun, P. Lilitkarntakul, I. M. MacIntyre et al., “Urinary endothelin-1 in chronic kidney disease and as a marker of disease activity in lupus nephritis,” American Journal of Physiology, vol. 296, no. 6, pp. F1477–F1483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Enghard, J. Y. Humrich, B. Rudolph et al., “CXCR3+CD4+ T cells are enriched in inflamed kidneys and urine and provide a new biomarker for acute nephritis flares in systemic lupus erythematosus patients,” Arthritis and Rheumatism, vol. 60, no. 1, pp. 199–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Wu, C. Xie, H. W. Wang et al., “Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in multiple murine lupus strains and human lupus nephritis,” Journal of Immunology, vol. 179, no. 10, pp. 7166–7175, 2007. View at Google Scholar · View at Scopus
  77. A. M. Hammad, H. M. Youssef, and M. M. El-Arman, “Transforming growth factor beta 1 in children with systemic lupus erythematosus: a possible relation with clinical presentation of lupus nephritis,” Lupus, vol. 15, no. 9, pp. 608–612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. R. W. Y. Chan, F. M. M. Lai, E. K. M. Li et al., “Expression of chemokine and fibrosing factor messenger RNA in the urinary sediment of patients with lupus nephritis,” Arthritis and Rheumatism, vol. 50, no. 9, pp. 2882–2890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. J. A. Gómez-Puerta, R. W. Burlingame, and R. Cervera, “Anti-chromatin (anti-nucleosome) antibodies: diagnostic and clinical value,” Autoimmunity Reviews, vol. 7, no. 8, pp. 606–611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Cervera, O. Viñas, M. Ramos-Casals et al., “Anti-chromatin antibodies in systemic lupus erythematosus: a useful marker for lupus nephropathy,” Annals of the Rheumatic Diseases, vol. 62, no. 5, pp. 431–434, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. Z. Amoura, S. Koutouzov, H. Chabre et al., “Presence of antinucleosome autoantibodies in a restricted set of connective tissue diseases: antinucleosome antibodies of the IgG3 subclass are markers of renal pathogenicity in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 43, no. 1, pp. 76–84, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Grootscholten, J. W. C. Dieker, F. D. McGrath et al., “A prospective study of anti-chromatin and anti-C1q autoantibodies in patients with proliferative lupus nephritis treated with cyclophosphamide pulses or azathioprine/methylprednisolone,” Annals of the Rheumatic Diseases, vol. 66, no. 5, pp. 693–696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. J. C. Oates, S. R. Shaftman, S. E. Self, and G. S. Gilkeson, “Association of serum nitrate and nitrite levels with longitudinal assessments of disease activity and damage in systemic lupus erythematosus and lupus nephritis,” Arthritis and Rheumatism, vol. 58, no. 1, pp. 263–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. S. D. Marks, S. J. Williams, K. Tullus, and N. J. Sebire, “Glomerular expression of monocyte chemoattractant protein-1 is predictive of poor renal prognosis in paediatric lupus nephritis,” Nephrology Dialysis Transplantation, vol. 23, no. 11, pp. 3521–3526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Nakayamada, K. Saito, K. Nakano, and Y. Tanaka, “Activation signal transduction by β1 integrin in T cells from patients with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 56, no. 5, pp. 1559–1568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Avihingsanon, P. Phumesin, T. Benjachat et al., “Measurement of urinary chemokine and growth factor messenger RNAs: a noninvasive monitoring in lupus nephritis,” Kidney International, vol. 69, no. 4, pp. 747–753, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. A. P. do Nascimento, V. D. S. T. Viana, L. D. A. Testagrossa et al., “Antibodies to ribosomal P proteins: a potential serologic marker for lupus membranous glomerulonephritis,” Arthritis and Rheumatism, vol. 54, no. 5, pp. 1568–1572, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. J. C. Oates, S. Varghese, A. M. Bland et al., “Prediction of urinary protein markers in lupus nephritis,” Kidney International, vol. 68, no. 6, pp. 2588–2592, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. P. M. Izmirly, L. Barisoni, J. P. Buyon et al., “Expression of endothelial protein C receptor in cortical peritubular capillaries associates with a poor clinical response in lupus nephritis,” Rheumatology, vol. 48, no. 5, pp. 513–519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Avihingsanon, T. Benjachat, A. Tassanarong, P. Sodsai, V. Kittikovit, and N. Hirankarn, “Decreased renal expression of vascular endothelial growth factor in lupus nephritis is associated with worse prognosis,” Kidney International, vol. 75, no. 12, pp. 1340–1348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. L. Martinez-Lostao, J. Ordi-Ros, E. Balada et al., “Activation of the signal transducer and activator of transcription-1 in diffuse proliferative lupus nephritis,” Lupus, vol. 16, no. 7, pp. 483–488, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. J. J. Manson, A. Ma, P. Rogers et al., “Relationship between anti-dsDNA, anti-nucleosome and anti-alpha-actinin antibodies and markers of renal disease in patients with lupus nephritis: a prospective longitudinal study,” Arthritis Research & Therapy, vol. 11, no. 5, p. R154, 2009. View at Google Scholar
  93. Y. Renaudineau, B. Deocharan, S. Jousse, E. Renaudineau, C. Putterman, and P. Youinou, “Anti-alpha-actinin antibodies: a new marker of lupus nephritis,” Autoimmunity Reviews, vol. 6, no. 7, pp. 464–468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Deocharan, X. Qing, J. Lichauco, and C. Putterman, “α-actinin is a cross-reactive renal target for pathogenic anti-DNA aptibodies,” Journal of Immunology, vol. 168, no. 6, pp. 3072–3078, 2002. View at Google Scholar · View at Scopus
  95. Z. Zhao, E. Weinstein, M. Tuzova et al., “Cross-reactivity of human lupus anti-DNA antibodies with a-actinin and nephritogenic potential,” Arthritis and Rheumatism, vol. 52, no. 2, pp. 522–530, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. L. J. Mason, C. T. Ravirajan, A. Rahman, C. Putterman, and D. A. Isenberg, “Is α-actinin a target for pathogenic anti-DNA antibodies in lupus nephritis?” Arthritis and Rheumatism, vol. 50, no. 3, pp. 866–870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. Renaudineau, S. Croquefer, S. Jousse et al., “Association of a-actinin-binding anti-double-stranded DNA antibodies with lupus nephritis,” Arthritis and Rheumatism, vol. 54, no. 8, pp. 2523–2532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Becker-Merok, M. Kalaaji, K. Haugbro et al., “a-actinin-binding antibodies in relation to systemic lupus erythematosus and lupus nephritis,” Arthritis Research and Therapy, vol. 8, no. 6, article R162, 2006. View at Publisher · View at Google Scholar · View at Scopus