Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 798467, 10 pages
http://dx.doi.org/10.1155/2010/798467
Research Article

Low-Dose Cyclophosphamide Synergizes with Dendritic Cell-Based Immunotherapy in Antitumor Activity

Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands

Received 30 November 2009; Revised 5 February 2010; Accepted 7 March 2010

Academic Editor: Zhengguo Xiao

Copyright © 2010 Joris D. Veltman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. W. S. Robinson, A. W. Musk, and R. A. Lake, “Malignant mesothelioma,” The Lancet, vol. 366, no. 9483, pp. 397–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Banchereau and A. K. Palucka, “Dendritic cells as therapeutic vaccines against cancer,” Nature Reviews Immunology, vol. 5, no. 4, pp. 296–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. M. Steinman and M. Dhodapkar, “Active immunization against cancer with dendritic cells: the near future,” International Journal of Cancer, vol. 94, no. 4, pp. 459–473, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. P. J. J. Hegmans, A. Hemmes, J. G. Aerts, H. C. Hoogsteden, and B. N. Lambrecht, “Immunotherapy of murine malignant mesothelioma using tumor lysate-pulsed dendritic cells,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 10, pp. 1168–1177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. C. G. Figdor, I. J. M. de Vries, W. J. Lesterhuis, and C. J. M. Melief, “Dendritic cell immunotherapy: mapping the way,” Nature Medicine, vol. 10, no. 5, pp. 475–480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sakaguchi, N. Sakaguchi, J. Shimizu et al., “Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance,” Immunological Reviews, vol. 182, pp. 18–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. J. P. J. J. Hegmans, A. Hemmes, H. Hammad, L. Boon, H. C. Hoogsteden, and B. N. Lambrecht, “Mesothelioma environment comprises cytokines and T-regulatory cells that suppress immune responses,” European Respiratory Journal, vol. 27, no. 6, pp. 1086–1095, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Meloni, M. Morosini, N. Solari et al., “Foxp3 expressing CD4+CD25+ and CD8+CD8- T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma,” Human Immunology, vol. 67, no. 1-2, pp. 1–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. DeLong, R. G. Carroll, A. C. Henry et al., “Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma,” Cancer Biology and Therapy, vol. 4, no. 3, pp. 342–346, 2005. View at Google Scholar · View at Scopus
  11. D. Berd and M. J. Mastrangelo, “Active immunotherapy of human melanoma exploiting the immunopotentiating effects of cyclophosphamide,” Cancer Investigation, vol. 6, no. 3, pp. 337–349, 1988. View at Google Scholar · View at Scopus
  12. M. F. Mescher and J. D. Rogers, “Immunotherapy of established murine tumors with large multivalent immunogen and cyclophosphamide,” Journal of Immunotherapy, vol. 19, no. 2, pp. 102–112, 1996. View at Google Scholar · View at Scopus
  13. J.-Y. Liu, Y. Wu, X.-S. Zhang et al., “Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine,” Cancer Immunology, Immunotherapy, vol. 56, no. 10, pp. 1597–1604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Taieb, N. Chaput, N. Schartz et al., “Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines,” Journal of Immunology, vol. 176, no. 5, pp. 2722–2729, 2006. View at Google Scholar · View at Scopus
  15. R. H. Goldfarb, M. Ohashi, K. W. Brunson et al., “Augmentation of IL-2 activated natural killer cell adoptive immunotherapy with cyclophosphamide,” Anticancer Research, vol. 18, no. 3, pp. 1441–1446, 1998. View at Google Scholar · View at Scopus
  16. E. Proietti, G. Greco, B. Garrone et al., “Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice,” Journal of Clinical Investigation, vol. 101, no. 2, pp. 429–441, 1998. View at Google Scholar · View at Scopus
  17. M. A. Mihalyo, A. D. H. Doody, J. P. McAleer et al., “In vivo cyclophosphamide and IL-2 treatment impedes self-antigen-induced effector CD4 cell tolerization: implications for adoptive immunotherapy,” Journal of Immunology, vol. 172, no. 9, pp. 5338–5345, 2004. View at Google Scholar · View at Scopus
  18. L. Li, T. Okino, T. Sugie et al., “Cyclophosphamide given after active specific immunization augments antitumor immunity by modulation of Th1 commitment of CD4+ T cells,” Journal of Surgical Oncology, vol. 67, no. 4, pp. 221–227, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. I. F. Hermans, T. W. Chong, M. J. Palmowski, A. L. Harris, and V. Cerundolo, “Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model,” Cancer Research, vol. 63, no. 23, pp. 8408–8413, 2003. View at Google Scholar · View at Scopus
  20. R. J. North, “Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells,” Journal of Experimental Medicine, vol. 155, no. 4, pp. 1063–1074, 1982. View at Google Scholar · View at Scopus
  21. M. L. Salem, A. N. Kadima, S. A. El-Naggar et al., “Defining the ability of cyclophosphamide preconditioning to enhance the antigen-specific CD8+ T-cell response to peptide vaccination: creation of a beneficial host microenvironment involving type I IFNs and myeloid cells,” Journal of Immunotherapy, vol. 30, no. 1, pp. 40–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. K. Nowak, R. A. Lake, and B. W. S. Robinson, “Combined chemoimmunotherapy of solid tumours: improving vaccines?” Advanced Drug Delivery Reviews, vol. 58, no. 8, pp. 975–990, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Ghiringhelli, C. Menard, P. E. Puig et al., “Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients,” Cancer Immunology, Immunotherapy, vol. 56, no. 5, pp. 641–648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Motoyoshi, K. Kaminoda, O. Saitoh et al., “Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide,” Oncology Reports, vol. 16, no. 1, pp. 141–146, 2006. View at Google Scholar · View at Scopus
  25. Y. Ikezawa, M. Nakazawa, C. Tamura, K. Takahashi, M. Minami, and Z. Ikezawa, “Cyclophosphamide decreases the number, percentage and the function of CD25+CD4+ regulatory T cells, which suppress induction of contact hypersensitivity,” Journal of Dermatological Science, vol. 39, no. 2, pp. 105–112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. E. C. Lutsiak, R. T. Semnani, R. De Pascalis, S. V. S. Kashmiri, J. Schlom, and H. Sabzevari, “Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide,” Blood, vol. 105, no. 7, pp. 2862–2868, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Ghiringhelli, N. Larmonier, E. Schmitt et al., “CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative,” European Journal of Immunology, vol. 34, no. 2, pp. 336–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R. G. van der Most, A. J. Currie, S. Mahendran et al., “Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy,” Cancer Immunology, Immunotherapy, vol. 58, no. 8, pp. 1219–1228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. G. van der Most, A. J. Currie, S. Mahendran et al., “Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy,” Cancer Immunology, Immunotherapy, vol. 58, no. 8, pp. 1219–1228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Jackaman, S. Cornwall, A. M. Lew, Y. Zhan, B. W. S. Robinson, and D. J. Nelson, “Local effector failure in mesothelioma is not mediated by CD4+CD25+ T-regulator cells,” European Respiratory Journal, vol. 34, no. 1, pp. 162–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. R. Davis, L. S. Manning, D. Whitaker, M. J. Garlepp, and B. W. S. Robinson, “Establishment of a murine model of malignant mesothelioma,” International Journal of Cancer, vol. 52, no. 6, pp. 881–886, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie et al., “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” Journal of Immunological Methods, vol. 223, no. 1, pp. 77–92, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Miyara and S. Sakaguchi, “Natural regulatory T cells: mechanisms of suppression,” Trends in Molecular Medicine, vol. 13, no. 3, pp. 108–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Sakaguchi, “Regulatory T cells,” Springer Seminars in Immunopathology, vol. 28, no. 1, pp. 1–2, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Yamaguchi and S. Sakaguchi, “Regulatory T cells in immune surveillance and treatment of cancer,” Seminars in Cancer Biology, vol. 16, no. 2, pp. 115–123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Nishikawa, T. Kato, I. Tawara et al., “Definition of target antigens for naturally occurring CD4+CD25+ regulatory T cells,” Journal of Experimental Medicine, vol. 201, no. 5, pp. 681–686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Sakaguchi, “Immunologic tolerance maintained by regulatory T cells: implications for autoimmunity, tumor immunity and transplantation tolerance,” Vox Sanguinis, vol. 83, supplement 1, pp. 151–153, 2002. View at Google Scholar · View at Scopus
  38. J.-P. H. Machiels, R. T. Reilly, L. A. Emens et al., “Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice,” Cancer Research, vol. 61, no. 9, pp. 3689–3697, 2001. View at Google Scholar · View at Scopus
  39. S. Wada, K. Yoshimura, E. L. Hipkiss et al., “Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model,” Cancer Research, vol. 69, no. 10, pp. 4309–4318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Maesen and R. Willighagen, “Regression of a malignant tumour of the pleura,” European Journal of Respiratory Diseases, vol. 71, no. 2, pp. 135–138, 1987. View at Google Scholar · View at Scopus
  41. B. W. S. Robinson, C. Robinson, and R. A. Lake, “Localised spontaneous regression in mesothelioma—possible immunological mechanism,” Lung Cancer, vol. 32, no. 2, pp. 197–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Schwartz, C. Maayan, M. Mouallem, S. Engelberg, and E. Friedman, “Malignant peritoneal mesothelioma: long-term spontaneous clinical remission,” Medical and Pediatric Oncology, vol. 19, no. 4, pp. 325–328, 1991. View at Google Scholar · View at Scopus
  43. J. E. Pilling, A. G. Nicholson, C. Harmer, and P. Goldstraw, “Prolonged survival due to spontaneous regression and surgical excision of malignant mesothelioma,” Annals of Thoracic Surgery, vol. 83, no. 1, pp. 314–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Yanagawa, S. Sone, K. Fukuta, Y. Nishioka, and T. Ogura, “Local adoptive immunotherapy using lymphokine-activated killer cells and interleukin-2 against malignant pleural mesothelioma: report of two cases,” Japanese Journal of Clinical Oncology, vol. 21, no. 5, pp. 377–383, 1991. View at Google Scholar · View at Scopus
  45. H. Bielefeldt-Ohmann, A. L. Marzo, R. P. Himbeck, A. G. Jarnicki, B. W. S. Robinson, and D. R. Fitzpatrick, “Interleukin-6 involvement in mesothelioma pathobiology: inhibition by interferon α immunotherapy,” Cancer Immunology Immunotherapy, vol. 40, no. 4, pp. 241–250, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Astoul, D. Picat-Joossen, J.-R. Viallat, and C. Boutin, “Intrapleural administration of interleukin-2 for the treatment of patients with malignant pleural mesothelioma: a phase II study,” Cancer, vol. 83, no. 10, pp. 2099–2104, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Caminschi, E. Venetsanakos, C. C. Leong, M. J. Garlepp, B. W. S. Robinson, and B. Scott, “Cytokine gene therapy of mesothelioma: immune and antitumor effects of transfected interleukin-12,” American Journal of Respiratory Cell and Molecular Biology, vol. 21, no. 3, pp. 347–356, 1999. View at Google Scholar · View at Scopus
  48. R. J. Kruklitis, S. Singhal, P. Delong et al., “Immuno-gene therapy with interferon-ß before surgical debulking delays recurrence and improves survival in a murine model of malignant mesothelioma,” Journal of Thoracic and Cardiovascular Surgery, vol. 127, no. 1, pp. 123–130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Robinson, M. Callow, S. Stevenson, B. Scott, B. W. S. Robinson, and R. A. Lake, “Serologic responses in patients with malignant mesothelioma. Evidence for both public and private specificities,” American Journal of Respiratory Cell and Molecular Biology, vol. 22, no. 5, pp. 550–556, 2000. View at Google Scholar · View at Scopus
  50. J. Banchereau, F. Briere, C. Caux et al., “Immunobiology of dendritic cells,” Annual Review of Immunology, vol. 18, pp. 767–811, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Nagaraj and D. I. Gabrilovich, “Tumor escape mechanism governed by myeloid-derived suppressor cells,” Cancer Research, vol. 68, no. 8, pp. 2561–2563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. W. J. Grossman, J. W. Verbsky, W. Barchet, M. Colonna, J. P. Atkinson, and T. J. Ley, “Human T regulatory cells can use the perforin pathway to cause autologous target cell death,” Immunity, vol. 21, no. 4, pp. 589–601, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Cao, S. F. Cai, T. A. Fehniger et al., “Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance,” Immunity, vol. 27, no. 4, pp. 635–646, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Darrasse-Jèze, A.-S. Bergot, A. Durgeau et al., “Tumor emergence is sensed by self-specific CD44hi memory Tregs that create a dominant tolerogenic environment for tumors in mice,” Journal of Clinical Investigation, vol. 119, no. 9, pp. 2648–2662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Awwad and R. J. North, “Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumor: a consequence of eliminating precursor L3T4+ suppressor T-cells,” Cancer Research, vol. 49, no. 7, pp. 1649–1654, 1989. View at Google Scholar · View at Scopus
  56. A. M. Ercolini, B. H. Ladle, E. A. Manning et al., “Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response,” Journal of Experimental Medicine, vol. 201, no. 10, pp. 1591–1602, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. L. Xu, W. Xu, Z. Jiang, F. Zhang, Y. Chu, and S. Xiong, “Depletion of CD4+CD25high regulatory T cells from tumor infiltrating lymphocytes predominantly induces Th1 type immune response in vivo which inhibits tumor growth in adoptive immunotherapy,” Cancer Biology and Therapy, vol. 8, no. 1, pp. 66–72, 2009. View at Google Scholar · View at Scopus
  58. S. Hori and S. Sakaguchi, “Foxp3: a critical regulator of the development and function of regulatory T cells,” Microbes and Infection, vol. 6, no. 8, pp. 745–751, 2004. View at Publisher · View at Google Scholar · View at Scopus