Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 853916, 19 pages
http://dx.doi.org/10.1155/2010/853916
Review Article

Uncovering the Complexity of Transcriptomes with RNA-Seq

1Institute of Genetics and Biophysics “A. Buzzati-Traverso”, IGB-CNR, 80131 Naples, Italy
2Istituto per le Applicazioni del Calcolo “Mauro Picone”, IAC-CNR, 80131 Naples, Italy

Received 22 February 2010; Accepted 7 April 2010

Academic Editor: Momiao Xiong

Copyright © 2010 Valerio Costa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. D. Licatalosi and R. B. Darnell, “RNA processing and its regulation: global insights into biological networks,” Nature Reviews Genetics, vol. 11, no. 1, pp. 75–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. V. E. Velculescu, L. Zhang, W. Zhou et al., “Characterization of the yeast transcriptome,” Cell, vol. 88, no. 2, pp. 243–251, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Lindberg and J. Lundeberg, “The plasticity of the mammalian transcriptome,” Genomics, vol. 95, no. 1, pp. 1–6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. W. F. Doolittle and C. Sapienza, “Selfish genes, the phenotype paradigm and genome evolution,” Nature, vol. 284, no. 5757, pp. 601–603, 1980. View at Google Scholar · View at Scopus
  5. R. J. Taft, M. Pheasant, and J. S. Mattick, “The relationship between non-protein-coding DNA and eukaryotic complexity,” BioEssays, vol. 29, no. 3, pp. 288–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Cavalier-Smith, “Cell volume and the evolution of eukaryote genome size,” in The Evolution of Genome Size, T. Cavalier-Smith, Ed., pp. 105–184, John Wiley & Sons, Chichester, UK, 1985. View at Google Scholar
  7. E. Birney, J. A. Stamatoyannopoulos, A. Dutta et al., “Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project,” Nature, vol. 447, no. 7146, pp. 799–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Jacquier, “The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs,” Nature Reviews Genetics, vol. 10, no. 12, pp. 833–844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for transcriptomics,” Nature Reviews Genetics, vol. 10, no. 1, pp. 57–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. W. Holley, “Alanine transfer RNA,” in Nobel Lectures in Molecular Biology 1933–1975, pp. 285–300, Elsevier North Holland, New York, NY, USA, 1977. View at Google Scholar
  11. A. M. Maxam and W. Gilbert, “A new method for sequencing DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 2, pp. 560–564, 1977. View at Google Scholar · View at Scopus
  12. F. Sanger, S. Nicklen, and A. R. Coulson, “DNA sequencing with chain-terminating inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 12, pp. 5463–5467, 1977. View at Google Scholar · View at Scopus
  13. E. R. Mardis, “Next-generation DNA sequencing methods,” Annual Review of Genomics and Human Genetics, vol. 9, pp. 387–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature Biotechnology, vol. 26, no. 10, pp. 1135–1145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. L. Metzker, “Sequencing technologies the next generation,” Nature Reviews Genetics, vol. 11, no. 1, pp. 31–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Irizarry, D. Warren, F. Spencer et al., “Multiple-laboratory comparison of microarray platforms,” Nature Methods, vol. 2, no. 5, pp. 345–349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. A. C. 't Hoen, Y. Ariyurek, H. H. Thygesen et al., “Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms,” Nucleic Acids Research, vol. 36, no. 21, article e141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. S. Bloom, Z. Khan, L. Kruglyak, M. Singh, and A. A. Caudy, “Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays,” BMC Genomics, vol. 10, article 221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Harbers and P. Carninci, “Tag-based approaches for transcriptome research and genome annotation,” Nature Methods, vol. 2, no. 7, pp. 495–502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. P. Horan, “Application of serial analysis of gene expression to the study of human genetic disease,” Human Genetics, vol. 126, no. 5, pp. 605–614, 2009. View at Google Scholar · View at Scopus
  21. H. Misu, T. Takamura, N. Matsuzawa et al., “Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes,” Diabetologia, vol. 50, no. 2, pp. 268–277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Takamura, H. Misu, T. Yamashita, and S. Kaneko, “SAGE application in the study of diabetes,” Current Pharmaceutical Biotechnology, vol. 9, no. 5, pp. 392–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. V. Gnatenko, J. J. Dunn, S. R. McCorkle, D. Weissmann, P. L. Perrotta, and W. F. Bahou, “Transcript profiling of human platelets using microarray and serial analysis of gene expression,” Blood, vol. 101, no. 6, pp. 2285–2293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. C. A. Sommer, E. C. Pavarino-Bertelli, E. M. Goloni-Bertollo, and F. Henrique-Silva, “Identification of dysregulated genes in lymphocytes from children with Down syndrome,” Genome, vol. 51, no. 1, pp. 19–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Malagó Jr., C. A. Sommer, C. Del Cistia Andrade et al., “Gene expression profile of human Down syndrome leukocytes,” Croatian Medical Journal, vol. 46, no. 4, pp. 647–656, 2005. View at Google Scholar · View at Scopus
  26. B. T. Wilhelm and J.-R. Landry, “RNA-Seq-quantitative measurement of expression through massively parallel RNA-Sequencing,” Methods, vol. 48, no. 3, pp. 249–257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. N. Bainbridge, R. L. Warren, M. Hirst et al., “Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach,” BMC Genomics, vol. 7, article 246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. U. Nagalakshmi, Z. Wang, K. Waern et al., “The transcriptional landscape of the yeast genome defined by RNA sequencing,” Science, vol. 320, no. 5881, pp. 1344–1349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. T. T. Torres, M. Metta, B. Ottenwälder, and C. Schlötterer, “Gene expression profiling by massively parallel sequencing,” Genome Research, vol. 18, no. 1, pp. 172–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Cloonan, A. R. R. Forrest, G. Kolle et al., “Stem cell transcriptome profiling via massive-scale mRNA sequencing,” Nature Methods, vol. 5, no. 7, pp. 613–619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. J. Core, J. J. Waterfall, and J. T. Lis, “Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters,” Science, vol. 322, no. 5909, pp. 1845–1848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. S.-I. Hashimoto, W. Qu, B. Ahsan et al., “High-resolution analysis of the 5'-end transcriptome using a next generation DNA sequencer,” PLoS ONE, vol. 4, no. 1, article e4108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Li, M. T. Lovci, Y.-S. Kwon, M. G. Rosenfeld, X.-D. Fu, and G. W. Yeo, “Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 51, pp. 20179–20184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad, “RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays,” Genome Research, vol. 18, no. 9, pp. 1509–1517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. R. D. Morin, M. D. O'Connor, M. Griffith et al., “Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells,” Genome Research, vol. 18, no. 4, pp. 610–621, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. R. D. Morin, M. Bainbridge, A. Fejes et al., “Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing,” BioTechniques, vol. 45, no. 1, pp. 81–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold, “Mapping and quantifying mammalian transcriptomes by RNA-Seq,” Nature Methods, vol. 5, no. 7, pp. 621–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Rosenkranz, T. Borodina, H. Lehrach, and H. Himmelbauer, “Characterizing the mouse ES cell transcriptome with Illumina sequencing,” Genomics, vol. 92, no. 4, pp. 187–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. D. J. Sugarbaker, W. G. Richards, G. J. Gordon et al., “Transcriptome sequencing of malignant pleural mesothelioma tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3521–3526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Sultan, M. H. Schulz, H. Richard et al., “A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome,” Science, vol. 321, no. 5891, pp. 956–960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. W. Asmann, E. W. Klee, E. A. Thompson et al., “3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer,” BMC Genomics, vol. 10, article 531, 2009. View at Google Scholar · View at Scopus
  42. I. Chepelev, G. Wei, Q. Tang, and K. Zhao, “Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq,” Nucleic Acids Research, vol. 37, no. 16, article e106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Z. Levin, M. F. Berger, X. Adiconis et al., “Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts,” Genome Biology, vol. 10, no. 10, article R115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. C. A. Maher, N. Palanisamy, J. C. Brenner et al., “Chimeric transcript discovery by paired-end transcriptome sequencing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 30, pp. 12353–12358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Parkhomchuk, T. Borodina, V. Amstislavskiy et al., “Transcriptome analysis by strand-specific sequencing of complementary DNA,” Nucleic Acids Research, vol. 37, no. 18, article e123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. T. E. Reddy, F. Pauli, R. O. Sprouse et al., “Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation,” Genome Research, vol. 19, no. 12, pp. 2163–2171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Tang, C. Barbacioru, Y. Wang et al., “mRNA-Seq whole-transcriptome analysis of a single cell,” Nature Methods, vol. 6, no. 5, pp. 377–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Blekhman, J. C. Marioni, P. Zumbo, M. Stephens, and Y. Gilad, “Sex-specific and lineage-specific alternative splicing in primates,” Genome Research, vol. 20, no. 2, pp. 180–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. G. A. Heap, J. H. M. Yang, K. Downes et al., “Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing,” Human Molecular Genetics, vol. 19, no. 1, pp. 122–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Raha, Z. Wang, Z. Moqtaderi et al., “Close association of RNA polymerase II and many transcription factors with Pol III genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 8, pp. 3639–3644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Marguerat and J. Bahler, “RNA-Seq: from technology to biology,” Cellular and Molecular Life Sciences, vol. 67, no. 4, pp. 569–579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. He, B. Vogelstein, V. E. Velculescu, N. Papadopoulos, and K. W. Kinzler, “The antisense transcriptomes of human cells,” Science, vol. 322, no. 5909, pp. 1855–1857, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Lister, R. C. O'Malley, J. Tonti-Filippini et al., “Highly integrated single-base resolution maps of the epigenome in Arabidopsis,” Cell, vol. 133, no. 3, pp. 523–536, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. B. T. Wilhelm, S. Marguerat, I. Goodhead, and J. Bahler, “Defining transcribed regions using RNA-Seq,” Nature Protocols, vol. 5, no. 2, pp. 255–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. N. T. Ingolia, S. Ghaemmaghami, J. R. S. Newman, and J. S. Weissman, “Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling,” Science, vol. 324, no. 5924, pp. 218–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. T. D. Harris, P. R. Buzby, H. Babcock et al., “Single-molecule DNA sequencing of a viral genome,” Science, vol. 320, no. 5872, pp. 106–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. J. C. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer, “Substantial biases in ultra-short read data sets from high-throughput DNA sequencing,” Nucleic Acids Research, vol. 36, no. 16, article e105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. O. Harismendy, P. C. Ng, R. L. Strausberg et al., “Evaluation of next generation sequencing platforms for population targeted sequencing studies,” Genome Biology, vol. 10, no. 3, article R32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. L. W. Hillier, G. T. Marth, A. R. Quinlan et al., “Whole-genome sequencing and variant discovery in C. elegans,” Nature Methods, vol. 5, no. 2, pp. 183–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. J. D. McPherson, “Next-generation gap,” Nature Methods, vol. 6, no. 11S, pp. S2–S5, 2009. View at Google Scholar
  61. D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read assembly using de Bruijn graphs,” Genome Research, vol. 18, no. 5, pp. 821–829, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. I. Birol, S. D. Jackman, C. B. Nielsen et al., “De novo transcriptome assembly with ABySS,” Bioinformatics, vol. 25, no. 21, pp. 2872–2877, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Denoeud, J.-M. Aury, C. Da Silva et al., “Annotating genomes with massive-scale RNA sequencing,” Genome Biology, vol. 9, no. 12, article R175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Yassoura, T. Kaplana, H. B. Fraser et al., “Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3264–3269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Trapnell and S. L. Salzberg, “How to map billions of short reads onto genomes,” Nature Biotechnology, vol. 27, no. 5, pp. 455–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Flicek and E. Birney, “Sense from sequence reads: methods for alignment and assembly,” Nature Methods, vol. 6, supplement 11, pp. S6–S12, 2009. View at Google Scholar · View at Scopus
  67. D. S. Horner, G. Pavesi, T. Castrignanò et al., “Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing,” Briefings in Bioinformatics, vol. 11, no. 2, pp. 181–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Cox, “ELAND: efficient local alignment of nucleotide data,” unpublished, http://bioit.dbi.udel.edu/howto/eland.
  69. “Applied Biosystems mappread and whole transcriptome software tools,” http://www.solidsoftwaretools.com/.
  70. H. Li, J. Ruan, and R. Durbin, “Mapping short DNA sequencing reads and calling variants using mapping quality scores,” Genome Research, vol. 18, no. 11, pp. 1851–1858, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. A. D. Smith, Z. Xuan, and M. Q. Zhang, “Using quality scores and longer reads improves accuracy of Solexa read mapping,” BMC Bioinformatics, vol. 9, article 128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Li, Y. Li, K. Kristiansen, and J. Wang, “SOAP: short oligonucleotide alignment program,” Bioinformatics, vol. 24, no. 5, pp. 713–714, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Li, C. Yu, Y. Li et al., “SOAP2: an improved ultrafast tool for short read alignment,” Bioinformatics, vol. 25, no. 15, pp. 1966–1967, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. B. D. Ondov, A. Varadarajan, K. D. Passalacqua, and N. H. Bergman, “Efficient mapping of Applied Biosystems SOLiD sequence data to a reference genome for functional genomic applications,” Bioinformatics, vol. 24, no. 23, pp. 2776–2777, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Jiang and W. H. Wong, “SeqMap: mapping massive amount of oligonucleotides to the genome,” Bioinformatics, vol. 24, no. 20, pp. 2395–2396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Lin, Z. Zhang, M. Q. Zhang, B. Ma, and M. Li, “ZOOM! Zillions of oligos mapped,” Bioinformatics, vol. 24, no. 21, pp. 2431–2437, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient alignment of short DNA sequences to the human genome,” Genome Biology, vol. 10, no. 3, article R25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Campagna, A. Albiero, A. Bilardi et al., “PASS: a program to align short sequences,” Bioinformatics, vol. 25, no. 7, pp. 967–968, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. N. Cloonan, Q. Xu, G. J. Faulkner et al., “RNA-MATE: a recursive mapping strategy for high-throughput RNA-sequencing data,” Bioinformatics, vol. 25, no. 19, pp. 2615–2616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. F. De Bona, S. Ossowski, K. Schneeberger, and G. Rätsch, “Optimal spliced alignments of short sequence reads,” Bioinformatics, vol. 24, no. 16, pp. i174–i180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Trapnell, L. Pachter, and S. L. Salzberg, “TopHat: discovering splice junctions with RNA-Seq,” Bioinformatics, vol. 25, no. 9, pp. 1105–1111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. G. J. Faulkner, A. R. R. Forrest, A. M. Chalk et al., “A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE,” Genomics, vol. 91, no. 3, pp. 281–288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Hashimoto, M. J. L. de Hoon, S. M. Grimmond, C. O. Daub, Y. Hayashizaki, and G. J. Faulkner, “Probabilistic resolution of multi-mapping reads in massively parallel sequencing data using MuMRescueLite,” Bioinformatics, vol. 25, no. 19, pp. 2613–2614, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. B. Li, V. Ruotti, R. M. Stewart, J. A. Thomson, and C. N. Dewey, “RNA-Seq gene expression estimation with read mapping uncertainty,” Bioinformatics, vol. 26, no. 4, pp. 493–500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. W. J. Kent, C. W. Sugnet, T. S. Furey et al., “The human genome browser at UCSC,” Genome Research, vol. 12, no. 6, pp. 996–1006, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. W. Huang and G. Marth, “EagleView: a genome assembly viewer for next-generation sequencing technologies,” Genome Research, vol. 18, no. 9, pp. 1538–1543, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Bao, H. Guo, J. Wang, R. Zhou, X. Lu, and S. Shi, “MapView: visualization of short reads alignment on a desktop computer,” Bioinformatics, vol. 25, no. 12, pp. 1554–1555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. I. Milne, M. Bayer, L. Cardle et al., “Tablet-next generation sequence assembly visualization,” Bioinformatics, vol. 26, no. 3, pp. 401–402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Li, B. Handsaker, A. Wysoker et al., “The sequence alignment/map format and SAMtools,” Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Jiang and W. H. Wong, “Statistical inferences for isoform expression in RNA-Seq,” Bioinformatics, vol. 25, no. 8, pp. 1026–1032, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Pepke, B. Wold, and A. Mortazavi, “Computation for ChIP-Seq and RNA-Seq studies,” Nature Methods, vol. 6, no. 11S, pp. S22–S32, 2009. View at Google Scholar · View at Scopus
  92. A. Oshlack and M. J. Wakefield, “Transcript length bias in RNA-Seq data confounds systems biology,” Biology Direct, vol. 4, article 14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. J. H. Bullard, E. A. Purdom, K. D. Hansen, S. Durinck, and S. Dudoit, “Statistical inference in mRNA-Seq: exploratory data analysis and differential expression,” Tech. Rep. 247/2009, University of California, Berkeley, 2009. View at Google Scholar
  94. B. T. Wilhelm, S. Marguerat, S. Watt et al., “Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution,” Nature, vol. 453, no. 7199, pp. 1239–1243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. Q. Pan, O. Shai, L. J. Lee, B. J. Frey, and B. J. Blencowe, “Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing,” Nature Genetics, vol. 40, no. 12, pp. 1413–1415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. E. T. Wang, R. Sandberg, S. Luo et al., “Alternative isoform regulation in human tissue transcriptomes,” Nature, vol. 456, no. 7221, pp. 470–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Wang, Y. Xi, J. Yu, L. Dong, L. Yen, and W. Li, “A statistical method for the detection of alternative splicing using RNA-Seq,” PLoS ONE, vol. 5, no. 1, article e8529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. D. Hiller, H. Jiang, W. Xu, and W. H. Wong, “Identifiability of isoform deconvolution from junction arrays and RNA-Seq,” Bioinformatics, vol. 25, no. 23, pp. 3056–3059, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Richard, M. H. Schulz, M. Sultan et al., “Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments,” Nucleic Acids Research, vol. 38, no. 10, p. e112, 2010. View at Publisher · View at Google Scholar
  100. G. K. Smyth, “Linear models and empirical Bayes methods for assessing differential expression in microarray experiments,” Statistical Applications in Genetics and Molecular Biology, vol. 3, no. 1, article 3, 2004. View at Google Scholar · View at Scopus
  101. S. Audic and J.-M. Claverie, “The significance of digital gene expression profiles,” Genome Research, vol. 7, no. 10, pp. 986–995, 1997. View at Google Scholar · View at Scopus
  102. M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edgeR: a bioconductor package for differential expression analysis of digital gene expression data,” Bioinformatics, vol. 26, no. 1, pp. 139–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Wang, Z. Feng, X. Wang, X. Wang, and X. Zhang, “DEGseq: an R package for identifying differentially expressed genes from RNA-Seq data,” Bioinformatics, vol. 26, no. 1, pp. 136–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Zheng and L. Chen, “A hierarchical Bayesian model for comparing transcriptomes at the individual transcript isoform level,” Nucleic Acids Research, vol. 37, no. 10, article e75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. F. S. Collins, E. S. Lander, J. Rogers, and R. H. Waterson, “Finishing the euchromatic sequence of the human genome,” Nature, vol. 431, no. 7011, pp. 931–945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. International Human Genome Sequencing Consortium, “A haplotype map of the human genome,” Nature, vol. 437, no. 7063, pp. 1299–1320, 2005. View at Google Scholar
  107. E. R. Mardis, “Anticipating the 1,000 dollar genome,” Genome Biology, vol. 7, no. 7, article 112, 2006. View at Google Scholar · View at Scopus
  108. V. Costa, A. Casamassimi, and A. Ciccodicola, “Nutritional genomics era: opportunities toward a genome-tailored nutritional regimen,” The Journal of Nutritional Biochemistry, vol. 21, no. 6, pp. 457–467, 2010. View at Publisher · View at Google Scholar · View at Scopus