Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 915234, 6 pages
http://dx.doi.org/10.1155/2010/915234
Research Article

The Anti-Inflammatory Activity of HMGB1 A Box Is Enhanced When Fused with C-Terminal Acidic Tail

1Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
2Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
3Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA

Received 8 August 2009; Revised 28 November 2009; Accepted 28 January 2010

Academic Editor: Rudi Beyaert

Copyright © 2010 Wei Gong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Javaherian, J. F. Liu, and J. C. Wang, “Nonhistone proteins HMG1 and HMG2 change the DNA helical structure,” Science, vol. 199, no. 4335, pp. 1345–1346, 1978. View at Google Scholar · View at Scopus
  2. H. Wang, O. Bloom, M. Zhang et al., “HMG-1 as a late mediator of endotoxin lethality in mice,” Science, vol. 285, no. 5425, pp. 248–251, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Yang, H. Wang, C. J. Czura, and K. J. Tracey, “The cytokine activity of HMGB1,” Journal of Leukocyte Biology, vol. 78, no. 1, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Andersson, H. Erlandsson-Harris, H. Yang, and K. J. Tracey, “HMGB1 as a DNA-binding cytokine,” Journal of Leukocyte Biology, vol. 72, no. 6, pp. 1084–1091, 2002. View at Google Scholar · View at Scopus
  5. E. D. Peltz, E. E. Moore, P. C. Eckels et al., “HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans,” Shock, vol. 32, no. 1, pp. 17–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. D. van Zoelen, H. Yang, S. Florquin et al., “Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products in high-mobility group box 1-induced inflammation in vivo,” Shock, vol. 31, no. 3, pp. 280–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. P. Fink, “Bench-to-bedside review: high-mobility group box 1 and critical illness,” Critical Care, vol. 11, no. 5, article 229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Wang, S. Zhu, R. Zhou, W. Li, and A. E. Sama, “Therapeutic potential of HMGB1-targeting agents in sepsis,” Expert Reviews in Molecular Medicine, vol. 10, article e32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Muller, L. Ronfani, and M. E. Bianchi, “Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function,” Journal of Internal Medicine, vol. 255, no. 3, pp. 332–343, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. H. M. Weir, P. J. Kraulis, C. S. Hill, A. R. C. Raine, E. D. Laue, and J. O. Thomas, “Structure of the HMG box motif in the B-domain of HMG1,” EMBO Journal, vol. 12, no. 4, pp. 1311–1319, 1993. View at Google Scholar · View at Scopus
  11. Q. Wang, M. Zeng, W. Wang, and J. Tang, “The HMGB1 acidic tail regulates HMGB1 DNA binding specificity by a unique mechanism,” Biochemical and Biophysical Research Communications, vol. 360, no. 1, pp. 14–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Li, R. Kokkola, S. Tabibzadeh et al., “Structural basis for the proinflammatory cytokine activity of high mobility group box 1,” Molecular Medicine, vol. 9, no. 1-2, pp. 37–45, 2003. View at Google Scholar · View at Scopus
  13. H. Yang, M. Ochani, J. Li et al., “Reversing established sepsis with antagonists of endogenous high-mobility group box 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 1, pp. 296–301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Gong, J.-F. Xu, H. Yin, S.-F. Liu, L.-H. Duan, and Z.-L. Bian, “Protective effect of antagonist of high-mobility group box 1 on lipopolysaccharide-induced acute lung injury in mice,” Scandinavian Journal of Immunology, vol. 69, no. 1, pp. 29–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Knapp, S. Muller, G. Digilio, T. Bonaldi, M. E. Bianchi, and G. Musco, “The long acidic tail of high mobility group box 1 (HMGB1) protein forms an extended and flexible structure that interacts with specific residues within and between the HMG boxes,” Biochemistry, vol. 43, no. 38, pp. 11992–11997, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Gong, F. T. He, R. F. Li et al., “Effects of acidic tail on human HMGB1 antibacterial activity,” Chinese Journal of Biochemistry and Molecular Biology, vol. 22, no. 7, pp. 524–529, 2006. View at Google Scholar
  17. P. Scaffidi, T. Misteli, and M. E. Bianchi, “Release of chromatin protein HMGB1 by necrotic cells triggers inflammation,” Nature, vol. 418, no. 6894, pp. 191–195, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Abraham, J. Arcaroli, A. Carmody, H. Wang, and K. J. Tracey, “HMG-1 as a mediator of acute lung inflammation,” Journal of Immunology, vol. 165, no. 6, pp. 2950–2954, 2000. View at Google Scholar · View at Scopus
  19. D.-Y. Chen, L.-M. Liu, S.-J. Liu, M.-Y. Zhu, L. Xu, and T.-H. Huang, “Single-chain antibody against human lipocalin-type prostaglandin D synthase: construction, expression, purification, and activity assay,” Biochemistry, vol. 73, no. 6, pp. 702–710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Andersson, H. Wang, K. Palmblad et al., “High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes,” Journal of Experimental Medicine, vol. 192, no. 4, pp. 565–570, 2000. View at Publisher · View at Google Scholar · View at Scopus