Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 956897, 9 pages
http://dx.doi.org/10.1155/2010/956897
Review Article

Claudin 1 in Breast Tumorigenesis: Revelation of a Possible Novel “Claudin High” Subset of Breast Cancers

1Department of Pathology, University of Manitoba, 770 Bannatyne Avenue, Winnipeg, Manitoba, Canada R3E 0W3
2Department of Physiology, University of Manitoba, 770 Bannatyne Avenue, Winnipeg, Manitoba, Canada R3E 0W3
3Department of Biochemistry and Medical Genetics, University of Manitoba, 770 Bannatyne Avenue, Winnipeg, Manitoba, Canada R3E 0W3

Received 22 September 2009; Revised 5 February 2010; Accepted 6 February 2010

Academic Editor: Amanda McCann

Copyright © 2010 Yvonne Myal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Canadian Cancer Statistics,” 2006, http://www.cancer.ca/.
  2. D. C. Allred, Y. Wu, S. Mao et al., “Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution,” Clinical Cancer Research, vol. 14, no. 2, pp. 370–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Hu, J. Yao, D. K. Carroll et al., “Regulation of in situ to invasive breast carcinoma transition,” Cancer Cell, vol. 13, no. 5, pp. 394–406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. P. T. Simpson, J. S. Reis-Filho, T. Gale, and S. R. Lakhani, “Molecular evolution of breat cancer,” Journal of Pathology, vol. 205, no. 2, pp. 248–254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Finak, S. Sadekova, F. Pepin et al., “Gene expression signatures of morphologically normal breast tissue identify basal-like tumors,” Breast Cancer Research, vol. 8, article R58, 2006. View at Publisher · View at Google Scholar
  6. M. L. Kwan, L. H. Kushi, E. Weltzien et al., “Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors,” Breast Cancer Research, vol. 11, article R31, 2009. View at Google Scholar
  7. T. O. Nielsen, F. D. Hsu, K. Jensen et al., “Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma,” Clinical Cancer Research, vol. 10, no. 16, pp. 5367–5374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. C. M. Perou, T. Sorlie, M. B. Eisen et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Sorlie, R. Tibshirani, J. Parker et al., “Repeated observation of breast tumor subtypes in independent gene expression data sets,” Proceedings of the National Academy of Sciences of USA, vol. 100, pp. 8418–8423, 2003. View at Google Scholar
  10. K.-D. Yu, Z.-Z. Shen, and Z.-M. Shao, “The immunohistochemically “eR-negative, PR-negative, HER2-negative, CK5/6-negative, and HER1-negative” subgroup is not a surrogate for the normal-like subtype in breast cancer,” Breast Cancer Research and Treatment, vol. 118, no. 3, pp. 661–663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. H. Bild, J. S. Parker, A. M. Gustafson et al., “An integration of complementary strategies for gene-expression analysis to reveal novel therapeutic opportunities for breast cancer,” Breast Cancer Research, vol. 11, article R55, 2009. View at Google Scholar
  12. J. Hugh, J. Hanson, M. C. U. Cheang et al., “Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial,” Journal of Clinical Oncology, vol. 27, no. 8, pp. 1168–1176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. R. I. Nicholson and S. R. Johnston, “Endocrine therapy—current benefits and limitations,” Breast Cancer Research and Treatment, vol. 93, supplement 1, pp. S3–S10, 2005. View at Google Scholar
  14. E. A. Rakha, S. E. Elsheikh, M. A. Aleskandarany et al., “Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes,” Clinical Cancer Research, vol. 15, no. 7, pp. 2302–2310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Vargo-Gogola and J. M. Rosen, “Modelling breast cancer: one size does not fit all,” Nature Reviews Cancer, vol. 7, no. 9, pp. 659–672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Kao, K. Salari, M. Bocanegra et al., “Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery,” PLoS ONE, vol. 4, no. 7, article e6146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. E. A. Rakha and I. O. Ellis, “Triple-negative/basal-like breast cancer: review,” Pathology, vol. 41, no. 1, pp. 40–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Polyak, “Breast cancer: origins and evolution,” Journal of Clinical Investigation, vol. 117, no. 11, pp. 3155–3163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Jeselsohn, N. E. Brown, L. Arendt et al., “Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis,” Cancer Cell, vol. 17, no. 1, pp. 65–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Guarino, B. Rubino, and G. Ballabio, “The role of epithelial-mesenchymal transition in cancer pathology,” Pathology, vol. 39, no. 3, pp. 305–318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. I. Kokkinos, R. Wafai, M. K. Wong, D. F. Newgreen, E. W. Thompson, and M. Waltham, “Vimentin and epithelial-mesenchymal transition in human breast cancer—observations in vitro and in vivo,” Cells Tissues Organs, vol. 185, no. 1–3, pp. 191–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Boyer, A. M. Valles, and N. Edme, “Induction and regulation of epithelial-mesenchymal transitions,” Biochemical Pharmacology, vol. 60, no. 8, pp. 1091–1099, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. E. D. Hay, “An overview of epithelio-mesenchymal transformation,” Acta Anatomica, vol. 154, no. 1, pp. 8–20, 1995. View at Google Scholar · View at Scopus
  24. M. Mareel and A. Leroy, “Clinical, cellular, and molecular aspects of cancer invasion,” Physiological Reviews, vol. 83, no. 2, pp. 337–376, 2003. View at Google Scholar · View at Scopus
  25. J. M. Mullin, “Potential interplay between luminal growth factors and increased tight junction permeability in epithelial carcinogenesis,” Journal of Experimental Zoology, vol. 279, no. 5, pp. 484–489, 1997. View at Google Scholar · View at Scopus
  26. S. Tsukita, M. Furuse, and M. Itoh, “Multifunctional strands in tight junctions,” Nature Reviews Molecular Cell Biology, vol. 2, no. 4, pp. 285–293, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Gonzales-Mariscal, Tight Junctions, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2001.
  28. J. M. Diamond, “Twenty-first Bowditch lecture. The epithelial junction: bridge, gate, and fence.,” Physiologist, vol. 20, no. 1, pp. 10–18, 1977. View at Google Scholar · View at Scopus
  29. H. Tobioka, H. Isomura, Y. Kokai, Y. Tokunaga, J. Yamaguchi, and N. Sawada, “Occludin expression decreases with the progression of human endometrial carcinoma,” Human Pathology, vol. 35, no. 2, pp. 159–164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Eaton and K. Simons, “Apical, basal, and lateral cues for epithelial polarization,” Cell, vol. 82, no. 1, pp. 5–8, 1995. View at Google Scholar · View at Scopus
  31. B. Gumbiner, “Structure, biochemistry, and assembly of epithelial tight junctions,” American Journal of Physiology, vol. 253, no. 6, pp. C749–C758, 1987. View at Google Scholar · View at Scopus
  32. M. Itoh and M. J. Bissell, “The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis,” Journal of Mammary Gland Biology and Neoplasia, vol. 8, pp. 449–462, 2003. View at Google Scholar
  33. P. J. Morin, “Claudin proteins in human cancer: promising new targets for diagnosis and therapy,” Cancer Research, vol. 65, no. 21, pp. 9603–9606, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Simons and S. D. Fuller, “Cell surface polarity in epithelia,” Annual Review of Cell Biology, vol. 1, pp. 243–288, 1985. View at Google Scholar · View at Scopus
  35. S. Tsukita and M. Furuse, “Claudin-based barrier in simple and stratified cellular sheets,” Current Opinion in Cell Biology, vol. 14, no. 5, pp. 531–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Andersen, M. S. Balda, and A. S. Fanning, “The structure and regulation of tight junctions,” Current Opinion in Cell Biology, vol. 5, no. 5, pp. 772–778, 1993. View at Google Scholar · View at Scopus
  37. L. L. Mitic and J. M. Anderson, “Molecular architecture of tight junctions,” Annual Review of Physiology, vol. 60, pp. 121–142, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. M. G. Farquhar and G. E. Palade, “Junctional complexes in various epithelia,” The Journal of Cell Biology, vol. 17, pp. 375–412, 1963. View at Google Scholar · View at Scopus
  39. K. B. Hoover, S.-Y. Liao, and P. J. Bryant, “Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity,” American Journal of Pathology, vol. 153, no. 6, pp. 1767–1773, 1998. View at Google Scholar · View at Scopus
  40. S. Polak-Charcon, J. Shoham, and Y. Ben-Shaul, “Tight junctions in epithelial cells of human fetal hindgut, normal colon, and colon adenocarcinoma,” Journal of the National Cancer Institute, vol. 65, no. 1, pp. 53–62, 1980. View at Google Scholar · View at Scopus
  41. A. P. Soler, R. D. Miller, K. V. Laughlin, N. Z. Carp, D. M. Klurfeld, and J. M. Mullin, “Increased tight junctional permeability is associated with the development of colon cancer,” Carcinogenesis, vol. 20, no. 8, pp. 1425–1431, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Kaihara, H. Kawamata, J. Imura et al., “Redifferentiation and ZO-1 reexpression in liver-metastasized colorectal cancer: possible association with epidermal growth factor receptor-induced tyrosine phosphorylation of ZO-1,” Cancer Science, vol. 94, no. 2, pp. 166–172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. National Center for Biotechnology Information, 2009, http://www.ncbi.nlm.nih.gov/gene.
  44. European Bioinformatics Institute, 2009, http://www.ebi.ac.uk/embl/.
  45. J. O. Bishop, A. J. Clark, P. M. Clissold, S. Hainey, and U. Francke, “Two main groups of mouse major urinary protein genes, both largely located on chromosome 4,” The EMBO Journal, vol. 1, no. 5, pp. 615–620, 1982. View at Google Scholar · View at Scopus
  46. L. Hood, M. Steinmetz, and R. Goodenow, “Genes of the major histocompatibility complex,” Cell, vol. 28, no. 4, pp. 685–687, 1982. View at Google Scholar · View at Scopus
  47. A. M. Tokes, J. Kulka, S. Paku et al., “Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study,” Breast Cancer Research, vol. 7, no. 2, pp. R296–R305, 2005. View at Google Scholar · View at Scopus
  48. Y. H. Loh, A. Christoffels, S. Brenner, W. Hunziker, and B. Venkatesh, “Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes,” Genome Research, vol. 14, no. 7, pp. 1248–1257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Tsukita and M. Furuse, “Occludin and claudins in tight-junction strands: leading or supporting players?” Trends in Cell Biology, vol. 9, pp. 268–273, 1999. View at Google Scholar
  50. The Cancer Genome Anatomy Project, 2009, http://cgap.nci.nih.gov/.
  51. K. Morita, M. Furuse, K. Fujimoto, and S. Tsukita, “Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 511–516, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Hoevel, R. Macek, O. Mundigl, K. Swisshelm, and M. Kubbies, “Expression and targeting of the tight junction protein CLDN1 in CLDN1-negative human breast tumor cells,” Journal of Cellular Physiology, vol. 191, no. 1, pp. 60–68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Kramer, K. White, M. Kubbies, K. Swisshelm, and B. H. F. Weber, “Genomic organization of claudin-1 and its assessment in hereditary and sporadic breast cancer,” Human Genetics, vol. 107, no. 3, pp. 249–256, 2000. View at Google Scholar · View at Scopus
  54. S. L. Kominsky, P. Argani, D. Korz et al., “Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast,” Oncogene, vol. 22, no. 13, pp. 2021–2033, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Furuse, M. Hata, K. Furuse et al., “Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice,” Journal of Cell Biology, vol. 156, no. 6, pp. 1099–1111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. K. J. Hewitt, R. Agarwal, and P. J. Morin, “The claudin gene family: expression in normal and neoplastic tissues,” BMC Cancer, vol. 6, article 186, 2006. View at Publisher · View at Google Scholar
  57. G. M. Sheehan, B. V. S. Kallakury, C. E. Sheehan, H. A. G. Fisher, R. P. Kaufman Jr., and J. S. Ross, “Loss of claudins-1 and -7 and expression of claudins-3 and -4 correlate with prognostic variables in prostatic adenocarcinomas,” Human Pathology, vol. 38, no. 4, pp. 564–569, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Swisshelm, R. Macek, and M. Kubbies, “Role of claudins in tumorigenesis,” Advanced Drug Delivery Reviews, vol. 57, no. 6, pp. 919–928, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. L. Cohn, V. N. Goncharuk, A. H. Diwan, P. S. Zhang, S. S. Shen, and V. G. Prieto, “Loss of claudin-1 expression in tumor-associated vessels correlates with acquisition of metastatic phenotype in melanocytic neoplasms,” Journal of Cutaneous Pathology, vol. 32, no. 8, pp. 533–536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Miyamoto, T. Kusumi, F. Sato et al., “Decreased expression of claudin-1 is correlated with recurrence status in esophageal squamous cell carcinoma,” Biomedical Research, vol. 29, no. 2, pp. 71–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. Y.-C. Chao, S.-H. Pan, S.-C. Yang et al., “Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 2, pp. 123–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Nemeth, Z. Nemeth, P. Tatrai et al., “High expression of claudin-1 protein in papillary thyroid tumor and its regional lymph node metastasis,” Pathology & Oncology Research, vol. 16, no. 1, pp. 19–27, 2009. View at Publisher · View at Google Scholar
  63. N. Oku, E. Sasabe, E. Ueta, T. Yamamoto, and T. Osaki, “Tight junction protein claudin-1 enhances the invasive activity of oral squamous cell carcinoma cells by promoting cleavage of laminin-5 γ2 chain via matrix metalloproteinase (MMP)-2 and membrane-type MMP-1,” Cancer Research, vol. 66, no. 10, pp. 5251–5257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Kleinberg, A. Holth, C. G. Trope, R. Reich, and B. Davidson, “Claudin upregulation in ovarian carcinoma effusions is associated with poor survival,” Human Pathology, vol. 39, no. 5, pp. 747–757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Dhawan, A. B. Singh, N. G. Deane et al., “Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer,” Journal of Clinical Investigation, vol. 115, no. 7, pp. 1765–1776, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. M. B. Resnick, T. Konkin, J. Routhier, E. Sabo, and V. E. Pricolo, “Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study,” Modern Pathology, vol. 18, no. 4, pp. 511–518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. P. D. Leotlela, M. S. Wade, P. H. Duray et al., “Claudin-1 overexpression in melanoma is regulated by PKC and contributes to melanoma cell motility,” Oncogene, vol. 26, no. 26, pp. 3846–3856, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. Y.-L. Wu, S. Zhang, G.-R. Wang, and Y.-P. Chen, “Expression transformation of claudin-1 in the process of gastric adenocarcinoma invasion,” World Journal of Gastroenterology, vol. 14, no. 31, pp. 4943–4948, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Miyamori, T. Takino, Y. Kobayashi et al., “Claudin promotes activation of pro-matrix metalloproteinase-2 mediated by membrane-type matrix metalloproteinases,” Journal of Biological Chemistry, vol. 276, no. 30, pp. 28204–28211, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Blanchard, R. Shiu, S. Booth et al., “Gene expression profiling of early involuting mammary gland reveals novel genes potentially relevant to human breast cancer,” Frontiers in Bioscience, vol. 12, pp. 2221–2232, 2007. View at Google Scholar
  71. A. A. A. Blanchard, P. H. Watson, R. P. C. Shiu et al., “Differential expression of claudin 1, 3, and 4 during normal mammary gland development in the mouse,” DNA and Cell Biology, vol. 25, no. 2, pp. 79–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Swisshelm, A. Machl, S. Planitzer, R. Robertson, M. Kubbies, and S. Hosier, “SEMP1, a senescence-associated cDNA isolated from human mammary epithelial cells, is a member of an epithelial membrane protein superfamily,” Gene, vol. 226, no. 2, pp. 285–295, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Morohashi, T. Kusumi, F. Sato et al., “Decreased expression of claudin-1 correlates with recurrence status in breast cancer,” International Journal of Molecular Medicine, vol. 20, no. 2, pp. 139–143, 2007. View at Google Scholar · View at Scopus
  74. M. Kulawiec, A. Safina, M. M. Desouki et al., “Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion,” Cancer Biology and Therapy, vol. 7, no. 11, pp. 1732–1743, 2008. View at Google Scholar · View at Scopus
  75. T. Hoevel, R. Macek, K. Swisshelm, and M. Kubbies, “Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids,” International Journal of Cancer, vol. 108, no. 3, pp. 374–383, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. A. A. Blanchard, G. P. Skliris, P. H. Watson et al., “Claudins 1, 3, and 4 protein expression in ER negative breast cancer correlates with markers of the basal phenotype,” Virchows Archiv, vol. 454, no. 6, pp. 647–656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. Y. Soini, S. Tommola, H. Helin, and P. Martikainen, “Claudins 1, 3, 4 and 5 in gastric carcinoma, loss of claudin expression associates with the diffuse subtype,” Virchows Archiv, vol. 448, no. 1, pp. 52–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. V. Bolos, H. Peinado, M. A. Perez-Moreno, M. F. Fraga, M. Esteller, and A. Cano, “The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors,” Journal of Cell Science, vol. 116, no. 3, pp. 499–511, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. K. M. Hajra, D. Y. Chen, and E. R. Fearon, “The SLUG zinc-finger protein represses E-cadherin in breast cancer,” Cancer Research, vol. 62, no. 6, pp. 1613–1618, 2002. View at Google Scholar · View at Scopus
  80. O. M. Martinez-Estrada, A. Culleres, F. X. Soriano et al., “The transcription factors Slug and Snail act as repressors of claudin-1 expression in epithelial cells,” Biochemical Journal, vol. 394, no. 2, pp. 449–457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Kulka, A. M. Szasz, Z. Nemeth et al., “Expression of tight junction protein Claudin-4 in basal-like breast carcinomas,” Pathology and Oncology Research, vol. 15, no. 1, pp. 59–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. P. N. Tay, Y. Lan, C. H. Leung, and S. C. Hooi, “Genes associated with metastasis and epithelial-mesenchymal transition (EMT)-like phenotype in human colon cancer cells: palladin in colon cancer metastasis,” in Proceedings of the 99th Annual Meeting of the American Association for Cancer Research (AACR '08), San Diego, Calif, USA, April 2008, abstract no. 5361.
  83. J. I. Herschkowitz, K. Simin, V. J. Weigman et al., “Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors,” Genome Biology, vol. 8, article R76, 2007. View at Google Scholar