Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 475641, 12 pages
http://dx.doi.org/10.1155/2011/475641
Review Article

Histone Deacetylase Inhibitors in the Treatment of Hematological Malignancies and Solid Tumors

1Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
2Section of Medical Oncology, Department of Surgical and Oncological Sciences, University of Palermo, 90127, Palermo, Italy
3Division of Biochemistry and Biophysics, Department of Biomedical Sciences, Medical School, National Institute of Biostructures and Biosystems, University of Sassari, Viale San Pietro, 43/b, 07100 Sassari, Italy

Received 19 July 2010; Accepted 12 October 2010

Academic Editor: Christian Seiser

Copyright © 2011 Mario Federico and Luigi Bagella. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. G. Allfrey, R. Faulkner, and A. E. Mirsky, “Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 51, pp. 786–794, 1964. View at Google Scholar
  2. V. G. Allfrey and A. E. Mirsky, “Structural modifications of histones and their possible role in the regulation of RNA synthesis,” Science, vol. 144, no. 3618, p. 559, 1964. View at Google Scholar · View at Scopus
  3. A. A. Lane and B. A. Chabner, “Histone deacetylase inhibitors in cancer therapy,” Journal of Clinical Oncology, vol. 27, no. 32, pp. 5459–5468, 2009. View at Publisher · View at Google Scholar
  4. G. Blander and L. Guarente, “The Sir2 family of protein deacetylases,” Annual Review of Biochemistry, vol. 73, pp. 417–435, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Gu and R. G. Roeder, “Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain,” Cell, vol. 90, no. 4, pp. 595–606, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Martínez-Balbás, U.-M. Bauer, S. J. Nielsen, A. Brehm, and T. Kouzarides, “Regulation of E2F1 activity by acetylation,” EMBO Journal, vol. 19, no. 4, pp. 662–671, 2000. View at Google Scholar · View at Scopus
  7. J. H. Patel, Y. Du, P. G. Ard et al., “The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60,” Molecular and Cellular Biology, vol. 24, no. 24, pp. 10826–10834, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. L.-F. Chen, W. Fischle, E. Verdin, and W. C. Greene, “Duration of nuclear NF-κB action regulated by reversible acetylation,” Science, vol. 293, no. 5535, pp. 1653–1657, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J.-W. Jeong, M.-K. Bae, M.-Y. Ahn et al., “Regulation and destabilization of HIF-1α by ARD1-mediated acetylation,” Cell, vol. 111, no. 5, pp. 709–720, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Wang, M. Fu, R. H. Angeletti et al., “Direct acetylation of the estrogen receptor α hinge region by p300 regulates transactivation and hormone sensitivity,” Journal of Biological Chemistry, vol. 276, no. 21, pp. 18375–18383, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Gaughan, I. R. Logan, S. Cook, D. E. Neal, and C. N. Robson, “Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor,” Journal of Biological Chemistry, vol. 277, no. 29, pp. 25904–25913, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Y. Cohen, S. Lavu, K. J. Bitterman et al., “Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis,” Molecular Cell, vol. 13, no. 5, pp. 627–638, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Kovacs, P. J. M. Murphy, S. Gaillard et al., “HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor,” Molecular Cell, vol. 18, no. 5, pp. 601–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Z.-L. Yuan, Y.-J. Guan, D. Chatterjee, and Y. E. Chin, “Stat3 dimerization regulated by reversible acetylation of a single lysine residue,” Science, vol. 307, no. 5707, pp. 269–273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Zhang, N. Li, C. Caron et al., “HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo,” EMBO Journal, vol. 22, no. 5, pp. 1168–1179, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Bolden, M. J. Peart, and R. W. Johnstone, “Anticancer activities of histone deacetylase inhibitors,” Nature Reviews Drug Discovery, vol. 5, no. 9, pp. 769–784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Whitesell and S. L. Lindquist, “HSP90 and the chaperoning of cancer,” Nature Reviews Cancer, vol. 5, no. 10, pp. 761–772, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. P. A. Marks and M. Dokmanovic, “Histone deacetylase inhibitors: discovery and development as anticancer agents,” Expert Opinion on Investigational Drugs, vol. 14, no. 12, pp. 1497–1511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. C. Drummond, C. O. Noble, D. B. Kirpotin, Z. Guo, G. K. Scott, and C. C. Benz, “Clinical development of histone deacetylase inhibitors as anticancer agents,” Annual Review of Pharmacology and Toxicology, vol. 45, pp. 495–528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Lagger, D. O'Carroll, M. Rembold et al., “Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression,” EMBO Journal, vol. 21, no. 11, pp. 2672–2681, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. C. M. Trivedi, Y. Luo, Z. Yin et al., “Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity,” Nature Medicine, vol. 13, no. 3, pp. 324–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Mariadason, “HDACs and HDAC inhibitors in colon cancer,” Epigenetics, vol. 3, no. 1, pp. 28–37, 2008. View at Google Scholar · View at Scopus
  23. V. M. Richon and J. P. O'Brien, “Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment,” Clinical Cancer Research, vol. 8, no. 3, pp. 662–664, 2002. View at Google Scholar · View at Scopus
  24. C. B. Yoo and P. A. Jones, “Epigenetic therapy of cancer: past, present and future,” Nature Reviews Drug Discovery, vol. 5, no. 1, pp. 37–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Nakagawa, Y. Oda, T. Eguchi et al., “Expression profile of class I histone deacetylases in human cancer tissues,” Oncology Reports, vol. 18, no. 4, pp. 769–774, 2007. View at Google Scholar · View at Scopus
  26. V. M. Richon, T. W. Sandhoff, R. A. Rifkind, and P. A. Marks, “Histone deacetylase inhibitor selectively induces p21WAF1 expressjon and gene-associated histone acetylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 18, pp. 10014–10019, 2000. View at Google Scholar · View at Scopus
  27. V. Sandor, A. Senderowicz, S. Mertins et al., “P21-dependent G1 arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228,” British Journal of Cancer, vol. 83, no. 6, pp. 817–825, 2000. View at Google Scholar · View at Scopus
  28. Y. Zhao, J. Tan, L. Zhuang, X. Jiang, E. T. Liu, and Q. Yu, “Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 44, pp. 16090–16095, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Insinga, S. Monestiroli, S. Ronzoni et al., “Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway,” Nature Medicine, vol. 11, no. 1, pp. 71–76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Nebbioso, N. Clarke, E. Voltz et al., “Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells,” Nature Medicine, vol. 11, no. 1, pp. 77–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Zhang, M. Adachi, R. Kawamura, and K. Imai, “Bmf is a possible mediator in histone deacetylase inhibitors FK228 and CBHA-induced apoptosis,” Cell Death and Differentiation, vol. 13, no. 1, pp. 129–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. G. Riggs, R. G. Whittaker, J. R. Neumann, and V. M. Ingram, “n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells,” Nature, vol. 268, no. 5619, pp. 462–464, 1977. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Kruh, “Effects of sodium butyrate, a new pharmacological agent, on cells in culture,” Molecular and Cellular Biochemistry, vol. 42, no. 2, pp. 65–82, 1982. View at Google Scholar · View at Scopus
  34. E. P. M. Candido, R. Reeves, and J. R. Davie, “Sodium butyrate inhibits histone deacetylation in cultured cells,” Cell, vol. 14, no. 1, pp. 105–113, 1978. View at Google Scholar · View at Scopus
  35. L. Sealy and R. Chalkley, “The effect of sodium butyrate on histone modification,” Cell, vol. 14, no. 1, pp. 115–121, 1978. View at Google Scholar · View at Scopus
  36. L. C. Boffa, G. Vidali, R. S. Mann, and V. G. Allfrey, “Suppression of histone deacetylation in vivo and in vitro by sodium butyrate,” Journal of Biological Chemistry, vol. 253, no. 10, pp. 3364–3366, 1978. View at Google Scholar · View at Scopus
  37. E. Rastl and P. Swetly, “Expression of poly(adenosine diphosphate-ribose) polymerase activity in erythroleukemic mouse cells during cell cycle and erythropoietic differentiation,” Journal of Biological Chemistry, vol. 253, no. 12, pp. 4333–4340, 1978. View at Google Scholar · View at Scopus
  38. P. A. Marks, V. M. Richon, and R. A. Rifkind, “Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells,” Journal of the National Cancer Institute, vol. 92, no. 15, pp. 1210–1216, 2000. View at Google Scholar · View at Scopus
  39. H. M. Prince, M. J. Bishton, and S. J. Harrison, “Clinical studies of histone deacetylase inhibitors,” Clinical Cancer Research, vol. 15, no. 12, pp. 3958–3969, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. P. A. Marks and R. Breslow, “Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug,” Nature Biotechnology, vol. 25, no. 1, pp. 84–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. R. L. Piekarz, R. Frye, M. Turner et al., “Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma,” Journal of Clinical Oncology, vol. 27, no. 32, pp. 5410–5417, 2009. View at Publisher · View at Google Scholar
  42. P. A. Marks and W.-S. Xu, “Histone deacetylase inhibitors: potential in cancer therapy,” Journal of Cellular Biochemistry, vol. 107, no. 4, pp. 600–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. B. Kim, K.-H. Lee, K. Sugita, M. Yoshida, and S. Horinouchi, “Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase,” Oncogene, vol. 18, no. 15, pp. 2461–2470, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Tan, S. Cang, Y. Ma, R. L. Petrillo, and D. Liu, “Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents,” Journal of Hematology and Oncology, vol. 3, article 5, 2010. View at Publisher · View at Google Scholar
  45. E. A. Olsen, Y. H. Kim, T. M. Kuzel et al., “Phase IIB multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous t-cell lymphoma,” Journal of Clinical Oncology, vol. 25, no. 21, pp. 3109–3115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Duvic, R. Talpur, X. Ni et al., “Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL),” Blood, vol. 109, no. 1, pp. 31–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Olsen, M. Duvic, D. Breneman et al., “Vorinostat provides prolonged safety and clinical benefit to patients with advanced cutaneous t-cell lymphoma (CTCL),” Journal of Clinical Oncology, vol. 26, 2008. View at Google Scholar
  48. M. Crump, B. Coiffier, E. D. Jacobsen et al., “Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid) in relapsed diffuse large-B-cell lymphoma,” Annals of Oncology, vol. 19, no. 5, pp. 964–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Kirschbaum, J. Zain, L. Popplewell et al., “Phase 2 study of suberoylanilide hydroxamic acid (SAHA) in relapsed or refractory indolent non-Hodgkin's lymphoma: a California Cancer Consortium study,” Journal of Clinical Oncology, vol. 25, 2007, abstract no. 18515. View at Google Scholar
  50. G. Garcia-Manero, H. Yang, C. Bueso-Ramos et al., “Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes,” Blood, vol. 111, no. 3, pp. 1060–1066, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. S. S. Ramalingam, R. A. Parise, R. K. Ramananthan et al., “Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies,” Clinical Cancer Research, vol. 13, no. 12, pp. 3605–3610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. S. S. Ramalingam, M. L. Maitland, P. Frankel et al., “Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 1, pp. 56–62, 2010. View at Publisher · View at Google Scholar
  53. D. Bradley, D. Rathkopf, R. Dunn et al., “Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862): trial results and interleukin-6 analysis: a study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago phase 2 consortium,” Cancer, vol. 115, no. 23, pp. 5541–5549, 2009. View at Publisher · View at Google Scholar
  54. J. Vansteenkiste, E. Van Cutsem, H. Dumez et al., “Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer,” Investigational New Drugs, vol. 26, no. 5, pp. 483–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. G. R. Blumenschein Jr., M. S. Kies, V. A. Papadimitrakopoulou et al., “Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer,” Investigational New Drugs, vol. 26, no. 1, pp. 81–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. S. K. Kachhap, N. Rosmus, S. J. Collis et al., “Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor,” PLoS ONE, vol. 5, no. 6, article e11208, pp. 1–12, 2010. View at Publisher · View at Google Scholar
  57. K. M. Miller, J. V. Tjeertes, J. Coates et al., “Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining,” Nature Structural and Molecular Biology, vol. 17, no. 9, pp. 1144–1151, 2010. View at Publisher · View at Google Scholar
  58. S. Folkvord, A. H. Ree, T. Furre, T. Halvorsen, and K. Flatmark, “Radiosensitization by SAHA in experimental colorectal carcinoma models-in vivo effects and relevance of histone acetylation status,” International Journal of Radiation Oncology, Biology, Physics, vol. 74, no. 2, pp. 546–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. A. H. Ree, S. Dueland, S. Folkvord et al., “Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study,” The Lancet Oncology, vol. 11, no. 5, pp. 459–464, 2010. View at Publisher · View at Google Scholar
  60. V. Sandor, S. Bakke, R. W. Robey et al., “Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms,” Clinical Cancer Research, vol. 8, no. 3, pp. 718–728, 2002. View at Google Scholar · View at Scopus
  61. J. C. Byrd, G. Marcucci, M. R. Parthun et al., “A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia,” Blood, vol. 105, no. 3, pp. 959–967, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Fouladi, W. L. Furman, T. Chin et al., “Phase I study of depsipeptide in pediatric patients with refractory solid tumors: a Children's Oncology Group report,” Journal of Clinical Oncology, vol. 24, no. 22, pp. 3678–3685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. V. M. Klimek, S. Fircanis, P. Maslak et al., “Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (Romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes,” Clinical Cancer Research, vol. 14, no. 3, pp. 826–832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. D. S. Schrump, M. R. Fischette, D. M. Nguyen et al., “Clinical and molecular responses in lung cancer patients receiving Romidepsin,” Clinical Cancer Research, vol. 14, no. 1, pp. 188–198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. W. M. Stadler, K. Margolin, S. Ferber, W. McCulloch, and J. A. Thompson, “A phase II study of depsipeptide in refractory metastatic renal cell cancer,” Clinical Genitourinary Cancer, vol. 5, no. 1, pp. 57–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Parker, R. Molife, V. Karavasilis et al., “Romidepsin (FK228), a histone heacetylase inhibitor: final results of a phase II study in metastatic hormone refractory prostate cancer (HRPC),” Journal of Clinical Oncology, vol. 25, 2007, abstract no. 15507. View at Google Scholar
  67. G. Garcia-Manero, S. Assouline, J. Cortes et al., “Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia,” Blood, vol. 112, no. 4, pp. 981–989, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Crump, C. Andreadis, S. Assouline, D. Rizzieri, A. Wedgwood, and P. Mclauglin, “Treatment of relapsed or refractory non-hodgkin lymphoma with the oral isotype-selective histone deacetylase inhibitor MGCD01013: interim results from a phase II study,” Journal of Clinical Oncology, vol. 26, 2008, abstract no. 8528. View at Google Scholar
  69. R. G. Bociek, G. Kuruvilla, B. Pro, A. Wedgwood, and Z. Li, “Isotype-selective histone deacetylase (HDAC) inhibitor MGCD0103 demonstrates clinical activity and safety in patients with relapsed/refractory classical Hodgkin Lymphoma (HL),” Journal of Clinical Oncology, vol. 26, 2008, abstract no. 8507. View at Google Scholar
  70. L. L. Siu, R. Pili, I. Duran et al., “Phase I study of MGCD0103 given as a three-times-per-week oral dose in patients with advanced solid tumors,” Journal of Clinical Oncology, vol. 26, no. 12, pp. 1940–1947, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Hurwitz, B. Nelson, P. J. O'Dwyer, E. G. Chiorean, N. Gabrail, and Z. Li, “Phase I/II: the oral isotype-selective HDAC inhibitor MGCD0103 in combination with gemcitabine (Gem) in patients (pts) with refractory solid tumors,” Journal of Clinical Oncology, vol. 26, 2008, abstract no. 4625. View at Google Scholar
  72. F. Giles, T. Fischer, J. Cortes et al., “A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies,” Clinical Cancer Research, vol. 12, no. 15, pp. 4628–4635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Duvic, F. Vanaclocha, M. G. Bernengo et al., “Phase II study of oral panobinostat (LBH589), a potent pan-deacetylase inhibitor, in patients with refractory Cutaneous T-Cell Lymphoma (CTCL),” Journal of Clinical Oncology, vol. 26, 2008, abstract no. 8555. View at Google Scholar
  74. P. Gimsing, M. Hansen, L. M. Knudsen et al., “A phase I clinical trial of the histone deacetylase inhibitor belinostat in patients with advanced hematological neoplasia,” European Journal of Haematology, vol. 81, no. 3, pp. 170–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. N. L. Steele, J. A. Plumb, L. Vidal et al., “A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors,” Clinical Cancer Research, vol. 14, no. 3, pp. 804–810, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. H. J. Mackay, H. Hirte, T. Colgan et al., “Phase II trial of the histone deacetylase inhibitor belinostat in women with platinum resistant epithelial ovarian cancer and micropapillary (LMP) ovarian tumours,” European Journal of Cancer, vol. 46, no. 9, pp. 1573–1579, 2010. View at Publisher · View at Google Scholar
  77. S. Kummar, M. Gutierrez, E. R. Gardner et al., “Phase I trial of MS-275, a histone deacetylase inhibitor, administered weekly in refractory solid tumors and lymphoid malignancies,” Clinical Cancer Research, vol. 13, no. 18, pp. 5411–5417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Gore, M. L. Rothenberg, C. L. O'Bryant et al., “A phase I and pharmacokinetic study of the oral histone deacetylase inhibitor, MS-275, in patients with refractory solid tumors and lymphomas,” Clinical Cancer Research, vol. 14, no. 14, pp. 4517–4525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. R. A. Juergens, F. Vendetti, B. Coleman, R. S. Sebree, M. A. Rudek, and S. A. Belinsky, “Phase I trial of 5-azacitidine (%AC) and SNDX-275 in advanced lung cancer (NSCLC),” Journal of Clinical Oncology, vol. 26, 2008, abstract no. 19036. View at Google Scholar
  80. A. Chavez-Blanco, B. Segura-Pacheco, E. Perez-Cardenas et al., “Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study,” Molecular Cancer, vol. 4, article 22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Atmaca, S.-E. Al-Batran, A. Maurer et al., “Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial,” British Journal of Cancer, vol. 97, no. 2, pp. 177–182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Candelaria, D. Gallardo-Rincón, C. Arce et al., “A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors,” Annals of Oncology, vol. 18, no. 9, pp. 1529–1538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Kuendgen, S. Knipp, F. Fox et al., “Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia,” Annals of Hematology, vol. 84, supplement 1, pp. 61–66, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. A. O. Soriano, H. Yang, S. Faderl et al., “Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome,” Blood, vol. 110, no. 7, pp. 2302–2308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Garcia-Manero, H. M. Kantarjian, B. Sanchez-Gonzalez et al., “Phase 1/2 study of the combination of 5-aza-2-deoxycytidine with valproic acid in patients with leukemia,” Blood, vol. 108, no. 10, pp. 3271–3279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. C. Swanton and C. Caldas, “Molecular classification of solid tumours: towards pathway-driven therapeutics,” British Journal of Cancer, vol. 100, no. 10, pp. 1517–1522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Jagannath, M. A. Dimopoulos, and S. Lonial, “Combined proteasome and histone deacetylase inhibition: a promising synergy for patients with relapsed/refractory multiple myeloma,” Leukemia Research, vol. 34, no. 9, pp. 1111–1118, 2010. View at Publisher · View at Google Scholar
  88. D. Weber, A. Badros, S. Jagannath et al., “Vorinostat plus Bortezomib for the treatment of relapsed/refractory multiple myeloma: early clinical experience,” Blood, vol. 112, 2008, abstract no. 871. View at Google Scholar
  89. R. Imanishi, A. Ohtsuru, M. Iwamatsu et al., “A histone deacetylase inhibitor enhances killing of undifferentiated thyroid carcinoma cells by p53 gene therapy,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 10, pp. 4821–4824, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. R. L. Piekarz, D. L. Sackett, and S. E. Bates, “Histone deacetylase inhibitors and demethylating agents: clinical development of histone deacetylase inhibitors for cancer therapy,” Cancer Journal, vol. 13, no. 1, pp. 30–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. W. K. Rasheed, R. W. Johnstone, and H. M. Prince, “Histone deacetylase inhibitors in cancer therapy,” Expert Opinion on Investigational Drugs, vol. 16, no. 5, pp. 659–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. J. G. Page, L. Rodman, J. E. Heath, J. E. Tomaszeqski, and A. C. Smith, “Effect of infusion rate on the toxicity of depsipeptide (NCS-63-176) in Beagle Dogs,” Proceedings of the American Association for Cancer Research, vol. 36, 1995, abstract no. 2193. View at Google Scholar
  93. J. G. Page, L. Rodman, J. E. Heath, J. E. Thomaszewski, and A. C. Smith, “Comparison of toxicity of depsipeptide (NSC-630176) in dogs and rats,” Proceedings of the American Association for Cancer Research, vol. 37, 1996, abstract no. 2549. View at Google Scholar
  94. R. L. Piekarz, A. R. Frye, J. J. Wright et al., “Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma,” Clinical Cancer Research, vol. 12, no. 12, pp. 3762–3773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. J. L. Marshall, N. Rizvi, J. Kauh et al., “A phase I trial of Depsipeptide (FR901228) in patients with advanced cancer,” Journal of Experimental Therapeutics and Oncology, vol. 2, no. 6, pp. 325–332, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Whittaker, W. McCulloch, T. Robak et al., “International multicenter Phase II study of the HDAC inhibitor (HDACi) depsipeptide (FK228) in cutaneous T-cell lymphoma (CTCL): interim report,” Journal of Clinical Oncology, vol. 24, 2006, abstract no. 3062. View at Google Scholar
  97. S. Balasubramanian, E. Verner, and J. J. Buggy, “Isoform-specific histone deacetylase inhibitors: the next step?” Cancer Letters, vol. 280, no. 2, pp. 211–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Chang, T. A. McKinsey, C. L. Zhang, J. A. Richardson, J. A. Hill, and E. N. Olson, “Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development,” Molecular and Cellular Biology, vol. 24, no. 19, pp. 8467–8476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. R. L. Montgomery, M. J. Potthoff, M. Haberland et al., “Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice,” Journal of Clinical Investigation, vol. 118, no. 11, pp. 3588–3597, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Fotheringham, M. T. Epping, L. Stimson et al., “Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis,” Cancer Cell, vol. 15, no. 1, pp. 57–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. O. Khan, S. Fotheringham, V. Wood et al., “HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 14, pp. 6532–6537, 2010. View at Publisher · View at Google Scholar