Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 523481, 15 pages
http://dx.doi.org/10.1155/2011/523481
Review Article

Modulation of Acetylation: Creating a Pro-survival and Anti-Inflammatory Phenotype in Lethal Hemorrhagic and Septic Shock

Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital/Harvard Medical School, 165 Cambridge Street, Suite 810, Boston, MA 02114, USA

Received 20 July 2010; Accepted 16 November 2010

Academic Editor: Patrick Matthias

Copyright © 2011 Yongqing Li and Hasan B. Alam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Keel and O. Trentz, “Pathophysiology of polytrauma,” Injury, vol. 36, no. 6, pp. 691–709, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. K. P. Mollen, R. M. Levy, J. M. Prince et al., “Systemic inflammation and end organ damage following trauma involves functional TLR4 signaling in both bone marrow-derived cells and parenchymal cells,” Journal of Leukocyte Biology, vol. 83, no. 1, pp. 80–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Lin, H. B. Alam, H. Chen et al., “Cardiac histones are substrates of histone deacetylase activity in hemorrhagic shock and resuscitation,” Surgery, vol. 139, no. 3, pp. 365–376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Gonzales, H. Chen, R. Munuve et al., “Valproic acid prevents hemorrhage-associated lethality and affects the acetylation pattern of cardiac histones,” Shock, vol. 25, no. 4, pp. 395–401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Li, B. Liu, H. Zhao et al., “Protective effect of suberoylanilide hydroxamic acid against lps-induced septic shock in rodents,” Shock, vol. 32, no. 5, pp. 517–523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Vidali, E. L. Gershey, and V. G. Allfrey, “Chemical studies of histone acetylation. The distribution of epsilon-N-acetyllysine in calf thymus histones,” Journal of Biological Chemistry, vol. 243, no. 24, pp. 6361–6366, 1968. View at Google Scholar · View at Scopus
  7. P. A. Marks and M. Dokmanovic, “Histone deacetylase inhibitors: discovery and development as anticancer agents,” Expert Opinion on Investigational Drugs, vol. 14, no. 12, pp. 1497–1511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Carey and N. B. La Thangue, “Histone deacetylase inhibitors: gathering pace,” Current Opinion in Pharmacology, vol. 6, no. 4, pp. 369–375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. D. M. Chuang, Y. Leng, Z. Marinova, H. J. Kim, and C. T. Chiu, “Multiple roles of HDAC inhibition in neurodegenerative conditions,” Trends in Neurosciences, vol. 32, no. 11, pp. 591–601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Suzuki, “Explorative study on isoform-selective histone deacetylase inhibitors,” Chemical and Pharmaceutical Bulletin, vol. 57, no. 9, pp. 897–906, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Voelter-Mahlknecht, A. D. Ho, and U. Mahlknecht, “Chromosomal organization and localization of the novel class IV human histone deacetylase 11 gene,” International Journal of Molecular Medicine, vol. 16, no. 4, pp. 589–598, 2005. View at Google Scholar · View at Scopus
  12. A. J. M. De Ruijter, A. H. Van Gennip, H. N. Caron, S. Kemp, and A. B. P. Van Kuilenburg, “Histone deacetylases (HDACs): characterization of the classical HDAC family,” Biochemical Journal, vol. 370, no. 3, pp. 737–749, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Hu, E. Dul, C. M. Sung et al., “Identification of novel isoform-selective inhibitors within class I histone deacetylases,” Journal of Pharmacology and Experimental Therapeutics, vol. 307, no. 2, pp. 720–728, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Dangond and S. R. Gullans, “Differential expression of human histone deacetylase mRNAs in response to immune cell apoptosis induction by Trichostatin A and butyrate,” Biochemical and Biophysical Research Communications, vol. 247, no. 3, pp. 833–837, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Mai, S. Massa, R. Pezzi, D. Rotili, P. Loidl, and G. Brosch, “Discovery of (aryloxopropenyl)pyrrolyl hydroxyamides as selective inhibitors of class IIa histone deacetylase homologue HD1-A,” Journal of Medicinal Chemistry, vol. 46, no. 23, pp. 4826–4829, 2003. View at Google Scholar
  16. A. A. Lane and B. A. Chabner, “Histone deacetylase inhibitors in cancer therapy,” Journal of Clinical Oncology, vol. 27, no. 32, pp. 5459–5468, 2009. View at Publisher · View at Google Scholar
  17. M. Gertz and C. Steegborn, “Function and regulation of the mitochondrial Sirtuin isoform Sirt5 in Mammalia,” Biochimica et Biophysica Acta, vol. 1804, no. 8, pp. 1658–1665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. J. Haggarty, K. M. Koeller, J. C. Wong, C. M. Grozinger, and S. L. Schreiber, “Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4389–4394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Weichert, “HDAC expression and clinical prognosis in human malignancies,” Cancer Letters, vol. 280, no. 2, pp. 168–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. N. Saha and K. Pahan, “HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis,” Cell Death and Differentiation, vol. 13, no. 4, pp. 539–550, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. K. L. Sugars and D. C. Rubinsztein, “Transcriptional abnormalities in Huntington disease,” Trends in Genetics, vol. 19, no. 5, pp. 233–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. H. J. Cha, “Transcriptional dysregulation in Huntington's disease,” Trends in Neurosciences, vol. 23, no. 9, pp. 387–392, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. J. S. Steffan, L. Bodai, J. Pallos et al., “Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila,” Nature, vol. 413, no. 6857, pp. 739–743, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. A. McCampbell, A. A. Taye, L. Whitty, E. Penney, J. S. Steffan, and K. H. Fischbeck, “Histone deacetylase inhibitors reduce polyglutamine toxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 15179–15184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. R. J. Ferrante, J. K. Kubilus, J. Lee et al., “Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice,” Journal of Neuroscience, vol. 23, no. 28, pp. 9418–9427, 2003. View at Google Scholar · View at Scopus
  26. E. Hockly, V. M. Richon, B. Woodman et al., “Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 4, pp. 2041–2046, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Ryu, K. Smith, S. I. Camelo et al., “Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice,” Journal of Neurochemistry, vol. 93, no. 5, pp. 1087–1098, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Petri, M. Kiaei, K. Kipiani et al., “Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis,” Neurobiology of Disease, vol. 22, no. 1, pp. 40–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Camelo, A. H. Iglesias, D. Hwang et al., “Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis,” Journal of Neuroimmunology, vol. 164, no. 1-2, pp. 10–21, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. G. Chang, H. M. Hsieh-Li, Y. J. Jong, N. M. Wang, C. H. Tsai, and H. Li, “Treatment of spinal muscular atrophy by sodium butyrate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 17, pp. 9808–9813, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. A. M. Avila, B. G. Burnett, A. A. Taye et al., “Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy,” Journal of Clinical Investigation, vol. 117, no. 3, pp. 659–671, 2007. View at Publisher · View at Google Scholar
  32. F. Yildirim, K. Gertz, G. Kronenberg et al., “Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury,” Experimental Neurology, vol. 210, no. 2, pp. 531–542, 2008. View at Publisher · View at Google Scholar
  33. T. Lin, H. Chen, E. Koustova et al., “Histone deacetylase as therapeutic target in a rodent model of hemorrhagic shock: effect of different resuscitation strategies on lung and liver,” Surgery, vol. 141, no. 6, pp. 784–794, 2007. View at Publisher · View at Google Scholar
  34. W. Cao, C. Bao, E. Padalko, and C. J. Lowenstein, “Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling,” Journal of Experimental Medicine, vol. 205, no. 6, pp. 1491–1503, 2008. View at Publisher · View at Google Scholar
  35. L. Zhang, J. Wan, R. Jiang et al., “Protective effects of trichostatin A on liver injury in septic mice,” Hepatology Research, vol. 39, no. 9, pp. 931–938, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. E. A. Sailhamer, Y. Li, E. J. Smith et al., “Acetylation: a novel method for modulation of the immune response following trauma/hemorrhage and inflammatory second hit in animals and humans,” Surgery, vol. 144, no. 2, pp. 204–216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. H. R. Champion, R. F. Bellamy, C. P. Roberts, and A. Leppaniemi, “A profile of combat injury,” The Journal of Trauma, vol. 54, no. 5, pp. S13–S19, 2003. View at Google Scholar · View at Scopus
  38. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Shults, E. A. Sailhamer, Y. Li et al., “Surviving blood loss without fluid resuscitation,” The Journal of Trauma, vol. 64, no. 3, pp. 629–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Y. Fukudome, A. R. Kochanek, Y. Li et al., “Pharmacologic resuscitation promotes survival and attenuates hemorrhage-induced activation of extracellular signal-regulated kinase 1/2,” Journal of Surgical Research. In press. View at Publisher · View at Google Scholar · View at Scopus
  41. H. B. Alam, F. Shuja, M. U. Butt et al., “Surviving blood loss without blood transfusion in a swine poly-trauma model,” Surgery, vol. 146, no. 2, pp. 325–333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Li, Z. Yuan, B. Liu et al., “Prevention of hypoxia-induced neuronal apoptosis through histone deacetylase inhibition,” The Journal of Trauma, vol. 64, no. 4, pp. 863–870, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Ryu, J. Lee, B. A. Olofsson et al., “Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4281–4286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. K. T. Chang and K. T. Min, “Regulation of lifespan by histone deacetylase,” Ageing Research Reviews, vol. 1, no. 3, pp. 313–326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Faraco, T. Pancani, L. Formentini et al., “Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain,” Molecular Pharmacology, vol. 70, no. 6, pp. 1876–1884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Shults, E. A. Sailhamer, Y. Li et al., “Surviving blood loss without fluid resuscitation,” The Journal of Trauma, vol. 64, no. 3, pp. 629–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Li, B. Liu, E. A. Sailhamer et al., “Cell protective mechanism of valproic acid in lethal hemorrhagic shock,” Surgery, vol. 144, no. 2, pp. 217–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Granger, I. Abdullah, F. Huebner et al., “Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice,” The FASEB Journal, vol. 22, no. 10, pp. 3549–3560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Krivoruchko and K. B. Storey, “Epigenetics in anoxia tolerance: a role for histone deacetylases,” Molecular and Cellular Biochemistry. In press. View at Publisher · View at Google Scholar · View at Scopus
  50. E. R. Gonzales, H. Chen, R. M. Munuve, T. Mehrani, A. Nadel, and E. Koustova, “Hepatoprotection and lethality rescue by histone deacetylase inhibitor valproic acid in fatal hemorrhagic shock,” The Journal of Trauma, vol. 65, no. 3, pp. 554–565, 2008. View at Google Scholar · View at Scopus
  51. J. St-Pierre, S. Drori, M. Uldry et al., “Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators,” Cell, vol. 127, no. 2, pp. 397–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Kucharska, L. K. Rushworth, C. Staples, N. A. Morrice, and S. M. Keyse, “Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK,” Cellular Signalling, vol. 21, no. 12, pp. 1794–1805, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Marumo, K. Hishikawa, M. Yoshikawa, and T. Fujita, “Epigenetic regulation of BMP7 in the regenerative response to ischemia,” Journal of the American Society of Nephrology, vol. 19, no. 7, pp. 1311–1320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Zacharias, E. A. Sailhamer, Y. Li et al., “Histone deacetylase inhibitors prevent apoptosis following lethal hemorrhagic shock in rodent kidney cells,” Resuscitation, vol. 82, no. 1, pp. 105–109, 2011. View at Publisher · View at Google Scholar
  55. G. Y. Oudit, H. Sun, B. G. Kerfant, M. A. Crackower, J. M. Penninger, and P. H. Backx, “The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease,” Journal of Molecular and Cellular Cardiology, vol. 37, no. 2, pp. 449–471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Shuja, M. Tabbara, Y. Li et al., “Profound hypothermia decreases cardiac apoptosis through Akt survival pathway,” Journal of the American College of Surgeons, vol. 209, no. 1, pp. 89–99, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. A. J. Kim, Y. Shi, R. C. Austin, and G. H. Werstuck, “Valproate protects cells fom ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3,” Journal of Cell Science, vol. 118, no. 1, pp. 89–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. X. H. Yao and B. L. Nyomba, “Hepatic insulin resistance induced by prenatal alcohol exposure is associated with reduced PTEN and TRB3 acetylation in adult rat offspring,” American Journal of Physiology, vol. 294, no. 6, pp. R1797–R1806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Torella, M. Rota, D. Nurzynska et al., “Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression,” Circulation Research, vol. 94, no. 4, pp. 514–524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Chesley, M. S. Lundberg, T. Asai et al., “The β-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through Gi-dependent coupling to phosphatidylinositol 3'-kinase,” Circulation Research, vol. 87, no. 12, pp. 1172–1179, 2000. View at Google Scholar · View at Scopus
  61. K. H. Kim, G. Y. Oudit, and P. H. Backx, “Erythropoietin protects against doxorubicin-induced cardiomyopathy via a phosphatidylinositol 3-kinase-dependent pathway,” Journal of Pharmacology and Experimental Therapeutics, vol. 324, no. 1, pp. 160–169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. B. DeBosch, N. Sambandam, C. Weinheimer, M. Courtois, and A. J. Muslin, “Akt2 regulates cardiac metabolism and cardiomyocyte survival,” Journal of Biological Chemistry, vol. 281, no. 43, pp. 32841–32851, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Avery, S. Etzion, B. J. Debosch et al., “TRB3 function in cardiac endoplasmic reticulum stress,” Circulation Research, vol. 106, no. 9, pp. 1516–1523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Kishimoto, K. Hamada, M. Saunders et al., “Physiological functions of Pten in mouse tissues,” Cell Structure and Function, vol. 28, no. 1, pp. 11–21, 2003. View at Google Scholar · View at Scopus
  65. G. Schwartzbauer and J. Robbins, “The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival,” Journal of Biological Chemistry, vol. 276, no. 38, pp. 35786–35793, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. J. O. Lee, H. Yang, M. M. Georgescu et al., “Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association,” Cell, vol. 99, no. 3, pp. 323–334, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Maehama and J. E. Dixon, “The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate,” Journal of Biological Chemistry, vol. 273, no. 22, pp. 13375–13378, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Stambolic, A. Suzuki, J. L. de la Pompa et al., “Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN,” Cell, vol. 95, no. 1, pp. 29–39, 1998. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Stiles, M. Groszer, S. Wang, J. Jiao, and H. Wu, “PTENless means more,” Developmental Biology, vol. 273, no. 2, pp. 175–184, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Okumura, M. Mendoza, R. M. Bachoo, R. A. DePinho, W. K. Cavenee, and F. B. Furnari, “PCAF modulates PTEN activity,” Journal of Biological Chemistry, vol. 281, no. 36, pp. 26562–26568, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Tamguney and D. Stokoe, “New insights into PTEN,” Journal of Cell Science, vol. 120, no. 23, pp. 4071–4079, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Du, S. Herzig, R. N. Kulkarni, and M. Montminy, “TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver,” Science, vol. 300, no. 5625, pp. 1574–1577, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. A. R. Saltiel, “Putting the brakes on insulin signaling,” The New England Journal of Medicine, vol. 349, no. 26, pp. 2560–2562, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. Z. Marinova, M. Ren, J. R. Wendland et al., “Valproic acid induces functional heat-shock protein 70 via class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation,” Journal of Neurochemistry, vol. 111, no. 4, pp. 976–987, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Gao and A. C. Newton, “The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C,” Journal of Biological Chemistry, vol. 277, no. 35, pp. 31585–31592, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Gotoh, K. Terada, S. Oyadomari, and M. Mori, “hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria,” Cell Death and Differentiation, vol. 11, no. 4, pp. 390–402, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. A. R. Stankiewicz, G. Lachapelle, C. P. Z. Foo, S. M. Radicioni, and D. D. Mosser, “Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation,” Journal of Biological Chemistry, vol. 280, no. 46, pp. 38729–38739, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. H. M. Beere, B. B. Wolf, K. Cain et al., “Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome,” Nature Cell Biology, vol. 2, no. 8, pp. 469–475, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Saleh, S. M. Srinivasula, L. Balkir, P. D. Robbins, and E. S. Alnemri, “Negative regulation of the Apaf-1 apoptosome by Hsp70,” Nature Cell Biology, vol. 2, no. 8, pp. 476–483, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Jäättelä, D. Wissing, K. Kokholm, T. Kallunki, and M. Egeblad, “Hsp7O exerts its anti-apoptotic function downstream of caspase-3-like proteases,” The EMBO Journal, vol. 17, no. 21, pp. 6124–6134, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. D. D. Mosser, A. W. Caron, L. Bourget et al., “The chaperone function of hsp70 is required for protection against stress-induced apoptosis,” Molecular and Cellular Biology, vol. 20, no. 19, pp. 7146–7159, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. A. B. Meriin, J. A. Yaglom, V. L. Gabai, D. D. Mosser, L. Zon, and M. Y. Sherman, “Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: a novel pathway controlled by HSP72,” Molecular and Cellular Biology, vol. 19, no. 4, pp. 2547–2555, 1999. View at Google Scholar · View at Scopus
  83. V. Volloch, V. L. Gabai, S. Rits, and M. Y. Sherman, “ATPase activity of the heat shock protein Hsp72 is dispensable for its effects on dephosphorylation of stress kinase JNK and on heat-induced apoptosis,” FEBS Letters, vol. 461, no. 1-2, pp. 73–76, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. H. S. Park, S. G. Cho, C. K. Kim et al., “Heat shock protein Hsp72 is a negative regulator of apoptosis signal-regulating kinase 1,” Molecular and Cellular Biology, vol. 22, no. 22, pp. 7721–7730, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. A. L. Joly, G. Wettstein, G. Mignot, F. Ghiringhelli, and C. Garrido, “Dual role of heat shock proteins as regulators of apoptosis and innate immunity,” Journal of Innate Immunity, vol. 2, no. 3, pp. 238–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. E. A. Deitch, “Role of the gut lymphatic system in multiple organ failure,” Current Opinion in Critical Care, vol. 7, no. 2, pp. 92–98, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. E. A. Deitch, D. Xu, and V. L. Kaiser, “Role of the gut in the development of injury- and shock induced SIRS and MODS: the gut-lymph hypothesis, a review,” Frontiers in Bioscience, vol. 11, no. 1, pp. 520–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. A. B. Peitzman, B. G. Harbrecht, A. O. Udekwu, T. R. Billiar, E. Kelly, and R. L. Simmons, “Hemorrhagic shock,” Current Problems in Surgery, vol. 32, no. 11, pp. 925–1002, 1995. View at Google Scholar · View at Scopus
  89. G. Thuijls, J. J. De Haan, J. P. M. Derikx et al., “Intestinal cytoskeleton degradation precedes tight junction loss following hemorrhagic shock,” Shock, vol. 31, no. 2, pp. 164–169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. E. A. Deitch, “Multiple organ failure: pathophysiology and potential future therapy,” Annals of Surgery, vol. 216, no. 2, pp. 117–134, 1992. View at Google Scholar · View at Scopus
  91. H. T. Hassoun, B. C. Kone, D. W. Mercer, F. G. Moody, N. W. Weisbrodt, and F. A. Moore, “Post-injury multiple organ failure: the role of the gut,” Shock, vol. 15, no. 1, pp. 1–10, 2001. View at Google Scholar · View at Scopus
  92. V. Wong and B. M. Gumbiner, “Synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier,” Journal of Cell Biology, vol. 136, no. 2, pp. 399–409, 1997. View at Publisher · View at Google Scholar · View at Scopus
  93. J. W. Baker, E. A. Deitch, M. Li, R. D. Berg, and R. D. Specian, “Hemorrhagic shock induces bacterial translocation from the gut,” The Journal of Trauma, vol. 28, no. 7, pp. 896–906, 1988. View at Google Scholar · View at Scopus
  94. M. P. Fink and R. L. Delude, “Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level,” Critical Care Clinics, vol. 21, no. 2, pp. 177–196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Hierholzer and T. R. Billiar, “Molecular mechanisms in the early phase of hemorrhagic shock,” Langenbeck's Archives of Surgery, vol. 386, no. 4, pp. 302–308, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. P. J. Morin, “Claudin proteins in human cancer: promising new targets for diagnosis and therapy,” Cancer Research, vol. 65, no. 21, pp. 9603–9606, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. Li, B. Liu, S. T. Dillon et al., “Identification of a novel potential biomarker in a model of hemorrhagic shock and valproic acid treatment,” Journal of Surgical Research, vol. 159, no. 1, pp. 474–481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. A. R. Kochenek, E. Y. Fukudome, J. S. Eleanor et al., “Pharmacological resuscitation attenuates MAP kinase pathway activation and pulmonary inflammation following hemorrhagic shock in rodent model,” in Proceedings of the Annual Meeting of the American College of Surgenones, October 2010.
  99. F. Blanchard and C. Chipoy, “Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases?” Drug Discovery Today, vol. 10, no. 3, pp. 197–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. F. Leoni, G. Fossati, E. C. Lewis et al., “The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo,” Molecular Medicine, vol. 11, no. 1-12, pp. 1–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. Li, B. Liu, E. Y. Fukudome et al., “Surviving lethal septic shock without fluid resuscitation in a rodent model,” Surgery, vol. 148, no. 2, pp. 246–254, 2010. View at Publisher · View at Google Scholar
  102. L. Zhang, S. Jin, C. Wang, R. Jiang, and J. Wan, “Histone deacetylase inhibitors attenuate acute lung injury during cecal ligation and puncture-induced polymicrobial sepsis,” World Journal of Surgery, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. M. S. Hayden and S. Ghosh, “Shared Principles in NF-κB Signaling,” Cell, vol. 132, no. 3, pp. 344–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. W. G. Deng and K. K. Wu, “Regulation of Inducible Nitric Oxide Synthase Expression by p300 and p50 Acetylation,” Journal of Immunology, vol. 171, no. 12, pp. 6581–6588, 2003. View at Google Scholar · View at Scopus
  105. WU. G. Deng, Y. Zhu, and K. K. Wu, “Up-regulation of p300 binding and p50 acetylation in tumor necrosis factor-α-induced cyclooxygenase-2 promoter activation,” Journal of Biological Chemistry, vol. 278, no. 7, pp. 4770–4777, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. L. F. Chen and W. C. Greene, “Shaping the nuclear action of NF-κB,” Nature Reviews Molecular Cell Biology, vol. 5, no. 5, pp. 392–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. L. F. Chen, Y. Mu, and W. C. Greene, “Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB,” The EMBO Journal, vol. 21, no. 23, pp. 6539–6548, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. R. Kiernan, V. Brès, R. W. M. Ng et al., “Post-activation turn-off of NF-κB-dependent transcription is regulated by acetylation of p65,” Journal of Biological Chemistry, vol. 278, no. 4, pp. 2758–2766, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. N. Huang, J. P. Katz, D. R. Martin, and G. D. Wu, “Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation,” Cytokine, vol. 9, no. 1, pp. 27–36, 1997. View at Publisher · View at Google Scholar · View at Scopus
  110. M. S. Inan, R. J. Rasoulpour, L. Yin, A. K. Hubbard, D. W. Rosenberg, and C. Giardina, “The luminal short-chain fatty acid butyrate modulates NF-κB activity in a human colonic epithelial cell line,” Gastroenterology, vol. 118, no. 4, pp. 724–734, 2000. View at Google Scholar · View at Scopus
  111. O. H. Krämer, M. Göttlicher, and T. Heinzel, “Histone deacetylase as a therapeutic target,” Trends in Endocrinology and Metabolism, vol. 12, no. 7, pp. 294–300, 2001. View at Google Scholar · View at Scopus
  112. E. Adam, V. Quivy, F. Bex et al., “Potentiation of tumor necrosis factor-induced NF-?B activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of I?Ba,” Molecular and Cellular Biology, vol. 23, no. 17, pp. 6200–6209, 2003. View at Publisher · View at Google Scholar
  113. B. P. Ashburner, S. D. Westerheide, and A. S. Baldwin, “The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression,” Molecular and Cellular Biology, vol. 21, no. 20, pp. 7065–7077, 2001. View at Publisher · View at Google Scholar · View at Scopus
  114. V. Quivy, E. Adam, Y. Collette et al., “Synergistic activation of human immunodeficiency virus type 1 promoter activity by NF-κB and inhibitors of deacetylases: potential perspectives for the development of therapeutic strategies,” Journal of Virology, vol. 76, no. 21, pp. 11091–11103, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. W. V. Berghe, K. De Bosscher, E. Boone, S. Plaisance, and G. Haegeman, “The nuclear factor-κB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter,” Journal of Biological Chemistry, vol. 274, no. 45, pp. 32091–32098, 1999. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Thomson, A. L. Clayton, C. A. Hazzalin, S. Rose, M. J. Barratt, and L. C. Mahadevan, “The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase,” The EMBO Journal, vol. 18, no. 17, pp. 4779–4793, 1999. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Saccani, S. Pantano, and G. Natoli, “p38-dependent marking of inflammatory genes for increased NF-κB recruitment,” Nature Immunology, vol. 3, no. 1, pp. 69–75, 2002. View at Publisher · View at Google Scholar · View at Scopus
  118. H. Chi and R. A. Flavell, “Acetylation of MKP-1 and the control of inflammation,” Science Signaling, vol. 1, no. 41, p. pe44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. T. J. Murphy, H. M. Paterson, J. A. Mannick, and J. A. Lederer, “Injury, sepsis, and the regulation of Toll-like receptor responses,” Journal of Leukocyte Biology, vol. 75, no. 3, pp. 400–407, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. A. J. Botha, F. A. Moore, E. E. Moore, A. Sauaia, A. Banerjee, and V. M. Peterson, “Early neutrophil sequestration after injury: a pathogenic mechanism for multiple organ failure,” The Journal of Trauma, vol. 39, no. 3, pp. 411–417, 1995. View at Google Scholar · View at Scopus
  121. A. M. Winter-Vann and G. L. Johnson, “Integrated activation of MAP3Ks balances cell fate in response to stress,” Journal of Cellular Biochemistry, vol. 102, no. 4, pp. 848–858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. N. D. Perkins, “Integrating cell-signalling pathways with NF-κB and IKK function,” Nature Reviews Molecular Cell Biology, vol. 8, no. 1, pp. 49–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. M. E. Bianchi, “DAMPs, PAMPs and alarmins: all we need to know about danger,” Journal of Leukocyte Biology, vol. 81, no. 1, pp. 1–5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. M. F. Tsan and B. Gao, “Heat shock proteins and immune system,” Journal of Leukocyte Biology, vol. 85, no. 6, pp. 905–910, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. T. H. Rogers and J. E. Babensee, “Altered adherent leukocyte profile on biomaterials in Toll-like receptor 4 deficient mice,” Biomaterials, vol. 31, no. 4, pp. 594–601, 2010. View at Google Scholar · View at Scopus
  126. U. Mahlknecht, J. Will, A. Varin, D. Hoelzer, and G. Herbein, “Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression,” Journal of Immunology, vol. 173, no. 6, pp. 3979–3990, 2004. View at Google Scholar · View at Scopus
  127. M. Wetzel, D. R. D. Premkumar, B. Arnold, and I. F. Pollack, “Effect of trichostatin A, a histone deacetylase inhibitor, on glioma proliferation in vitro by inducing cell cycle arrest and apoptosis,” Journal of Neurosurgery, vol. 103, supplement 6, pp. 549–556, 2005. View at Google Scholar
  128. H. T. Aung, K. Schroder, S. R. Himes et al., “LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression,” The FASEB Journal, vol. 20, no. 9, pp. 1315–1327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. S. B. Han and J. K. Lee, “Anti-inflammatory effect of trichostatin-A on murine bone marrow-derived macrophages,” Archives of Pharmacal Research, vol. 32, no. 4, pp. 613–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. T. Suuronen, J. Huuskonen, R. Pihlaja, S. Kyrylenko, and A. Salminen, “Regulation of microglial inflammatory response by histone deacetylase inhibitors,” Journal of Neurochemistry, vol. 87, no. 2, pp. 407–416, 2003. View at Publisher · View at Google Scholar · View at Scopus
  131. Y. Choi, S. K. Park, M. K. Hwan et al., “Histone deacetylase inhibitor KBH-A42 inhibits cytokine production in RAW 264.7 macrophage cells and in vivo endotoxemia model,” Experimental and Molecular Medicine, vol. 40, no. 5, pp. 574–581, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. W. K. Kelly and P. A. Marks, “Drug insight: histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid,” Nature Clinical Practice Oncology, vol. 2, no. 3, pp. 150–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Dokmanovic, C. Clarke, and P. A. Marks, “Histone deacetylase inhibitors: overview and perspectives,” Molecular Cancer Research, vol. 5, no. 10, pp. 981–989, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. J. S. Ungerstedt, Y. Sowa, W. S. Xu et al., “Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 673–678, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. C. H. Lillig and A. Holmgren, “Thioredoxin and related molecules—from biology to health and disease,” Antioxidants and Redox Signaling, vol. 9, no. 1, pp. 25–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. L. M. Butler, X. Zhou, W. S. Xu et al., “The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11700–11705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Saitoh, H. Nishitoh, M. Fujii et al., “Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1,” The EMBO Journal, vol. 17, no. 9, pp. 2596–2606, 1998. View at Publisher · View at Google Scholar · View at Scopus
  138. A. Lai, J. M. Lee, W. M. Yang et al., “RBP1 recruits both histone deacetylase-dependent and -independent repression activities to retinoblastoma family proteins,” Molecular and Cellular Biology, vol. 19, no. 10, pp. 6632–6641, 1999. View at Google Scholar · View at Scopus
  139. J. Kaczynski, J. S. Zhang, V. Ellenrieder et al., “The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1,” Journal of Biological Chemistry, vol. 276, no. 39, pp. 36749–36756, 2001. View at Publisher · View at Google Scholar · View at Scopus
  140. Z. Yu, W. Zhang, and B. C. Kone, “Histone deacetylases augment cytokine induction of the iNOS gene,” Journal of the American Society of Nephrology, vol. 13, no. 8, pp. 2009–2017, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. S. C. Tsai, N. Valkov, W. M. Yang, J. Gump, D. Sullivan, and E. Seto, “Histone deacetylase interacts directly with DNA topoisomerase II,” Nature Genetics, vol. 26, no. 3, pp. 349–353, 2000. View at Publisher · View at Google Scholar · View at Scopus
  142. H. Zhu, L. Shan, P. W. Schiller, A. Mai, and T. Peng, “Histone deacetylase-3 activation promotes tumor necrosis factor-α (TNF-α) expression in cardiomyocytes during lipopolysaccharide stimulation,” Journal of Biological Chemistry, vol. 285, no. 13, pp. 9429–9436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. C. M. Grozinger and S. L. Schreiber, “Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 14, pp. 7835–7840, 2000. View at Google Scholar · View at Scopus
  144. F. Yeung, J. E. Hoberg, C. S. Ramsey et al., “Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase,” The EMBO Journal, vol. 23, no. 12, pp. 2369–2380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Spange, T. Wagner, T. Heinzel, and O. H. Krämer, “Acetylation of non-histone proteins modulates cellular signalling at multiple levels,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 1, pp. 185–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. M. A. Wilson, A. R. Ricci, B. J. Deroo, and T. K. Archer, “The histone deacetylase inhibitor trichostatin A blocks progesterone receptor-mediated transactivation of the mouse mammary tumor virus promoter in vivo,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 15171–15181, 2002. View at Publisher · View at Google Scholar · View at Scopus