Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 569068, 21 pages
http://dx.doi.org/10.1155/2011/569068
Review Article

Rodent Preclinical Models for Developing Novel Antiarthritic Molecules: Comparative Biology and Preferred Methods for Evaluating Efficacy

1Department of Pathology, Amgen Inc., Thousand Oaks, CA 91320, USA
2GEMpath Inc., 2867 Humboldt Cir, Longmont, CO 80503, USA
3Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA 91320, USA
4Department of Inflammation, Amgen Inc., Thousand Oaks, CA 91320, USA
5Willamette Health Partners, Salem, OR 97301, USA
6HAMILTON Bonaduz AG, 7402 Bonaduz, Switzerland
7Department of Global Development, Amgen Inc., Thousand Oaks, CA 91320, USA
8EUROCBI GmbH, Benglen, 8121 Zurich, Switzerland

Received 10 September 2010; Accepted 20 October 2010

Academic Editor: Oreste Gualillo

Copyright © 2011 Brad Bolon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. G. Birnbaum, M. Barton, P. E. Greenberg et al., “Direct and indirect costs of rheumatoid arthritis to an employer,” Journal of Occupational and Environmental Medicine, vol. 42, no. 6, pp. 588–596, 2000. View at Google Scholar · View at Scopus
  2. C. K. Kwoh, L. G. Anderson, J. M. Greene et al., “Guidelines for the Management of rheumatoid arthritis: 2002 update—American College of Rheumatology subcommittee on rheumatoid arthritis guidelines,” Arthritis and Rheumatism, vol. 46, no. 2, pp. 328–346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Bläss, J. M. Engel, and G. R. Burmester, “The immunologic homunculus in rheumatoid arthritis. A new viewpoint of immunopathogenesis in rheumatoid arthritis and therapeutic consequences,” Zeitschrift für Rheumatologie, vol. 60, no. 1, pp. 1–16, 2001 (German). View at Google Scholar
  4. U. Feige, Y. L. Hu, J. Gasser, G. Campagnuolo, L. Munyakazi, and B. Bolon, “Anti-interleukin-1 and anti-tumor necrosis factor-α synergistically inhibit adjuvant arthritis in Lewis rats,” Cellular and Molecular Life Sciences, vol. 57, no. 10, pp. 1457–1470, 2000. View at Google Scholar · View at Scopus
  5. W. B. van den Berg, “Uncoupling of inflammatory and destructive mechanisms in arthritis,” Seminars in Arthritis and Rheumatism, vol. 30, no. 5, pp. 7–16, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Rioja, K. A. Bush, J. B. Buckton, M. C. Dickson, and P. F. Life, “Joint cytokine quantification in two rodent arthritis models: kinetics of expression, correlation of mRNA and protein levels and response to prednisolone treatment,” Clinical and Experimental Immunology, vol. 137, no. 1, pp. 65–73, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. D. Köller, “Targeted therapy in rheumatoid arthritis,” Wiener Medizinische Wochenschrift, vol. 156, no. 1-2, pp. 53–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Campagnuolo, B. Bolon, and U. Feige, “Kinetics of bone protection by recombinant osteoprotegerin therapy in Lewis rats with adjuvant arthritis,” Arthritis and Rheumatism, vol. 46, no. 7, pp. 1926–1936, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. E. M. Gravallese, “Bone destruction in arthritis,” Annals of the Rheumatic Diseases, vol. 61, no. 2, supplement, pp. ii84–ii86, 2002. View at Google Scholar · View at Scopus
  10. M. Stolina, S. Adamu, M. Ominsky et al., “RANKL is a marker and mediator of local and systemic bone loss in two rat models of inflammatory arthritis,” Journal of Bone and Mineral Research, vol. 20, no. 10, pp. 1756–1765, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Holoshitz, A. Matitiau, and I. R. Cohen, “Arthritis induced in rats by cloned T lymphocytes responsive to mycobacteria but not to collagen type II,” Journal of Clinical Investigation, vol. 73, no. 1, pp. 211–215, 1984. View at Google Scholar · View at Scopus
  12. S. A. Stimpson, R. R. Brown, S. K. Anderle et al., “Arthropathic properties of cell wall polymers from normal flora bacteria,” Infection and Immunity, vol. 51, no. 1, pp. 240–249, 1986. View at Google Scholar
  13. M. P. Hazenberg, I. S. Klasen, J. Kool, J. G. H. Ruseler-van Embden, and A. J. Severijnen, “Are intestinal bacteria involved in the etiology of rheumatoid arthritis?” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 100, no. 1, pp. 1–9, 1992. View at Google Scholar
  14. K. M. Kulmatycki and F. Jamali, “Drug disease interactions: role of inflammatory mediators in disease and variability in drug response,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 3, pp. 602–625, 2005. View at Google Scholar · View at Scopus
  15. J. H. Klippel, L. J. Crofford, J. H. Stone, and C. M. Weyand, Primer on the Rheumatic Diseaes, Arthritis Foundation, Atlanta, Ga, USA, 12th edition, 2001.
  16. M. Hegen, J. C. Keith, M. Collins, and C. L. Nickerson-Nutter, “Utility of animal models for identification of potential therapeutics for rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 67, no. 11, pp. 1505–1515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Bevaart, M. J. Vervoordeldonk, and P. P. Tak, “Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis?” Arthritis and Rheumatism, vol. 62, no. 8, pp. 2192–2205, 2010. View at Publisher · View at Google Scholar
  18. C. Bianchi, “Antibody-induced foot oedema, hyperalgesia and monoarticular arthritis in rats, guinea-pigs and rabbits for testing anti-inflammatory, antiarthritic agents,” Agents and Actions, vol. 11, no. 6-7, pp. 750–761, 1981. View at Google Scholar · View at Scopus
  19. B. Henderson and E. R. Pettipher, “Comparison of the in vivo inflammatory activities after intra-articular injection of natural and recombinant IL-1α and IL-1β in the rabbit,” Biochemical Pharmacology, vol. 37, no. 21, pp. 4171–4176, 1988. View at Google Scholar · View at Scopus
  20. U. Feige, A. Karbowski, C. Rordorf-Adam, and A. Pataki, “Arthritis induced by continuous infusion of hr-interleukin-1α into the rabbit knee-joint,” International Journal of Tissue Reactions, vol. 11, no. 5, pp. 225–238, 1989. View at Google Scholar · View at Scopus
  21. B. A. 'T. Hart, R. A. Bank, J. A. D. M. De Roos et al., “Collagen-induced arthritis in rhesus monkeys: evaluation of markers for inflammation and joint degradation,” British Journal of Rheumatology, vol. 37, no. 3, pp. 314–323, 1998. View at Google Scholar · View at Scopus
  22. M. P. M. Vierboom, M. Jonker, R. E. Bontrop, and B. 'T. Hart, “Modelling human arthritic diseases in nonhuman primates,” Arthritis Research and Therapy, vol. 7, no. 4, pp. 145–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. G. A. Limb, K. A. Brown, R. A. Wolstencroft, B. A. Ellis, and D. C. Dumonde, “The production of arthritis in the guinea-pig by intra-articular reaction between lymphokines and inflammatory leucocytes,” British Journal of Experimental Pathology, vol. 70, no. 4, pp. 443–456, 1989. View at Google Scholar · View at Scopus
  24. N. Yamashita, I. Nakanishi, and Y. Okada, “Arthritis induced immunologically with cationic amidated bovine serum albumin in the guinea pig. A morphological and biochemical study on the destruction of articular cartilage,” Virchows Archive B, vol. 60, no. 1, pp. 57–66, 1991. View at Google Scholar
  25. A. F. Al-Mobireek, A. M. G. Darwazeh, and M. B. Hassanin, “Experimental induction of rheumatoid arthritis in temporomandibular joint of the guinea pig: a clinical and radiographic study,” Dentomaxillofacial Radiology, vol. 29, no. 5, pp. 286–290, 2000. View at Google Scholar · View at Scopus
  26. H. Vermeirsch, R. Biermans, P. L. Salmon, and T. F. Meert, “Evaluation of pain behavior and bone destruction in two arthritic models in guinea pig and rat,” Pharmacology Biochemistry and Behavior, vol. 87, no. 3, pp. 349–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Joe, M. M. Griffiths, E. F. Remmers, and R. L. Wilder, “Animal models of rheumatoid arthritis and related inflammation,” Current Rheumatology Reports, vol. 1, no. 2, pp. 139–148, 1999. View at Google Scholar · View at Scopus
  28. R. L. Wilder, E. F. Remmers, Y. Kawahito, P. S. Gulko, G. W. Cannon, and M. M. Griffiths, “Genetic factors regulating experimental arthritis in mice and rats,” in Genes and Genetics of Autoimmunity, A. N. Theofilopoulos, Ed., pp. 121–165, Karger, Basel, Switzerland, 1999. View at Google Scholar
  29. C. Rintisch and R. Holmdahl, “DA rats from two colonies differ genetically and in their arthritis susceptibility,” Mammalian Genome, vol. 19, no. 6, pp. 420–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. G. Fox, S. W. Barthold, M. T. Davisson, C. E. Newcomer, F. W. Quimby, and A. L. Smith, The Mouse in Biomedical Research, Vol 4: Immunology, Academic Press, San Diego, Calif, USA, 2nd edition, 2007.
  31. H. Ibelgaufts, “COPE (Cytokines & Cells Online Pathfinder Encyclopedia), ed. 24.7,” August 2010, http://www.copewithcytokines.de.
  32. H. T. Yang, J. Jirholt, L. Svensson et al., “Identification of genes controlling collagen-induced arthritis in mice: striking homology with susceptibility loci previously identified in the rat,” Journal of Immunology, vol. 163, no. 5, pp. 2916–2921, 1999. View at Google Scholar · View at Scopus
  33. R. Horai, S. Saijo, H. Tanioka et al., “Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin I receptor antagonist-deficient mice,” Journal of Experimental Medicine, vol. 191, no. 2, pp. 313–320, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Li and E. M. Schwarz, “The TNF-α transgenic mouse model of inflammatory arthritis,” Springer Seminars in Immunopathology, vol. 25, no. 1, pp. 19–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. J. W. Gregersen, S. Holmes, and L. Fugger, “Humanized animal models for autoimmune diseases,” Tissue Antigens, vol. 63, no. 5, pp. 383–394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Mandik-Nayak and P. M. Allen, “Initiation of an autoimmune response: insights from a transgenic model of rheumatoid arthritis,” Immunologic Research, vol. 32, no. 1–3, pp. 5–13, 2005. View at Google Scholar · View at Scopus
  37. A. Bendele, J. McComb, T. Gould et al., “Animal models of arthritis: relevance to human disease,” Toxicologic Pathology, vol. 27, no. 1, pp. 134–142, 1999. View at Google Scholar · View at Scopus
  38. K. Terato, R. Hashida, K. Miyamoto et al., “Histological, immunological and biochemical studies on type II collagen-induced arthritis in rats,” Biomedical Research, vol. 3, no. 5, pp. 495–505, 1982. View at Google Scholar
  39. D. E. Trentham, A. S. Townes, and A. H. Kang, “Autoimmunity to type II collagen: an experimental model of arthritis,” Journal of Experimental Medicine, vol. 146, no. 3, pp. 857–868, 1977. View at Google Scholar · View at Scopus
  40. D. D. Anthony and T. M. Haqqi, “Collagen-induced arthritis in mice: an animal model to study the pathogenesis of rheumatoid arthritis,” Clinical and Experimental Rheumatology, vol. 17, no. 2, pp. 240–244, 1999. View at Google Scholar · View at Scopus
  41. A. B. Blom, P. L. E. M. van Lent, A. E. M. Holthuysen, and W. B. van den Berg, “Immune complexes, but not streptococcal cell walls or zymosan, cause chronic arthritis in mouse strains susceptible for collagen type II auto-immune arthritis,” Cytokine, vol. 11, no. 12, pp. 1046–1056, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Holmdahl, T. J. Goldschmidt, S. Kleinau, C. Kvick, and R. Jonsson, “Arthritis induced in rats with adjuvant oil is a genetically restricted, αβ T-cell dependent autoimmune disease,” Immunology, vol. 76, no. 2, pp. 197–202, 1992. View at Google Scholar · View at Scopus
  43. C. Mauri, C. Q. Q. Chu, D. Woodrow, L. Mori, and M. Londei, “Treatment of a newly established transgenic model of chronic arthritis with nondepleting anti-CD4 monoclonal antibody,” Journal of Immunology, vol. 159, no. 10, pp. 5032–5041, 1997. View at Google Scholar · View at Scopus
  44. D. B. Magilavy, “Animal models of chronic inflammatory arthritis,” Clinical Orthopaedics and Related Research, no. 259, pp. 38–45, 1990. View at Google Scholar · View at Scopus
  45. L. J. Crofford and R. L. Wilder, “Arthritis and autoimmunity in animals,” in Arthritis and Allied Conditions, W. Koopman, Ed., pp. 565–583, Williams and Wilkins,, Baltimore, Md, USA, 1997. View at Google Scholar
  46. M. W. Whitehouse, K. J. Orr, F. W. J. Beck, and C. M. Pearson, “Freund's adjuvants: relationship of arthritogenicity and adjuvanticity in rats to vehicle composition,” Immunology, vol. 27, no. 2, pp. 311–330, 1974. View at Google Scholar · View at Scopus
  47. J. C. Lorentzen, “Identification of arthritogenic adjuvants of self and foreign origin,” Scandinavian Journal of Immunology, vol. 49, no. 1, pp. 45–50, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Yoshino, Y. Murata, and M. Ohsawa, “Successful induction of adjuvant arthritis in mice by treatment with a monoclonal antibody against IL-4,” Journal of Immunology, vol. 161, no. 12, pp. 6904–6908, 1998. View at Google Scholar · View at Scopus
  49. J. S. Courtenay, M. J. Dallman, A. D. Dayan, A. Martin, and B. Mosedale, “Immunisation against heterologous type II collagen induces arthritis in mice,” Nature, vol. 283, no. 5748, pp. 666–668, 1980. View at Google Scholar
  50. P. H. Wooley, “Animal models of rheumatoid arthritis,” Current Opinion in Rheumatology, vol. 3, no. 3, pp. 407–420, 1991. View at Google Scholar · View at Scopus
  51. E. Šimelyte, M. Rimpiläinen, K. Rantakokko et al., “Tissue distribution and persistence of arthritogenic and non-arthritogenic Eubacterium cell walls,” Clinical and Experimental Rheumatology, vol. 17, no. 3, pp. 281–288, 1999. View at Google Scholar · View at Scopus
  52. J. R. Ward and R. S. Jones, “The pathogenesis of mycoplasma (PPLO) arthritis in rats,” Arthritis and Rheumatism, vol. 5, pp. 163–175, 1962. View at Google Scholar · View at Scopus
  53. T. J. A. Lehman, J. B. Allen, P. H. Plotz, and R. L. Wilder, “Polyarthritis in rats following the systemic injection of Lactobacillus casei cell walls in aqueous suspension,” Arthritis and Rheumatism, vol. 26, no. 10, pp. 1259–1265, 1983. View at Google Scholar · View at Scopus
  54. M. Andreis, P. Stastny, and M. Ziff, “Experimental arthritis produced by injection of mediators of delayed hypersensitivity,” Arthritis and Rheumatism, vol. 17, no. 5, pp. 537–551, 1974. View at Google Scholar · View at Scopus
  55. T. D. Cooke and H. E. Jasin, “The pathogenesis of chronic inflammation in experimental antigen-induced arthritis. I. The role of antigen on the local immune response,” Arthritis and Rheumatism, vol. 15, no. 4, pp. 327–337, 1972. View at Google Scholar · View at Scopus
  56. L. E. Glynn, “The chronicity of inflammation and its significance in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 27, no. 2, pp. 105–121, 1968. View at Google Scholar · View at Scopus
  57. W. B. van den Berg, L. B. A. van de Putte, W. A. Zwarts, and L. A. B. Joosten, “Electrical charge of the antigen determines intraarticular antigen handling and chronicity of arthritis in mice,” Journal of Clinical Investigation, vol. 74, no. 5, pp. 1850–1859, 1984. View at Google Scholar · View at Scopus
  58. K. Terato, D. S. Harper, M. M. Griffiths et al., “Collagen-induced arthritis in mice: synergistic effect of E. coli lipopolysaccharide bypasses epitope specificity in the induction of arthritis with monoclonal antibodies to type II collagen,” Autoimmunity, vol. 22, no. 3, pp. 137–147, 1995. View at Google Scholar · View at Scopus
  59. K. S. Nandakumar, L. Svensson, and R. Holmdahl, “Collagen type II-specific monoclonal antibody-induced arthritis in mice: description of the disease and the influence of age, sex, and genes,” American Journal of Pathology, vol. 163, no. 5, pp. 1827–1837, 2003. View at Google Scholar · View at Scopus
  60. P. Hutamekalin, T. Saito, K. Yamaki et al., “Collagen antibody-induced arthritis in mice: development of a new arthritogenic 5-clone cocktail of monoclonal anti-type II collagen antibodies,” Journal of Immunological Methods, vol. 343, no. 1, pp. 49–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. P. A. Monach, D. Mathis, and C. Benoist, “The K/BxN arthritis model,” Current Protocols in Immunology, chapter 15, unit 15.22, 2008. View at Google Scholar
  62. B. Bolon, G. Campagnuolo, L. Zhu, D. Duryea, D. Zack, and U. Feige, “Interleukin-1β and tumor necrosis factor-α produce distinct, time-dependent patterns of acute arthritis in the rat knee,” Veterinary Pathology, vol. 41, no. 3, pp. 235–243, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. A. M. Malfait, M. Tortorella, J. Thompson et al., “Intra-articular injection of tumor necrosis factor-α in the rat: an acute and reversible in vivo model of cartilage proteoglycan degradation,” Osteoarthritis and Cartilage, vol. 17, no. 5, pp. 627–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. K. E. Rendt, T. S. Barry, D. M. Jones, C. B. Richter, S. S. McCachren, and B. F. Haynes, “Engraftment of human synovium into severe combined immune deficient mice: migration of human peripheral blood T cells to engrafted human synovium and to mouse lymph nodes,” Journal of Immunology, vol. 151, no. 12, pp. 7324–7336, 1993. View at Google Scholar · View at Scopus
  65. U. Sack, H. Kuhn, J. Ermann et al., “Synovial tissue implants from patients with rheumatoid arthritis cause cartilage destruction in knee joints of SCID.bg mice,” Journal of Rheumatology, vol. 21, no. 1, pp. 10–16, 1994. View at Google Scholar · View at Scopus
  66. C. Jorgensen, F. Apparailly, I. Couret, F. Canovas, C. Jacquet, and J. Sany, “Interleukin-4 and interleukin-10 are chondroprotective and decrease mononuclear cell recruitment in human rheumatoid synovium in vivo,” Immunology, vol. 93, no. 4, pp. 518–523, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Selye, “On the mechanism through which hydrocortisone affects the resistance of tissues to injury: an experimental study with the granuloma pouch technique,” Journal of the American Medical Association, vol. 152, no. 13, pp. 1207–1213, 1953. View at Google Scholar
  68. J. C. W. Edwards, A. D. Sedgwick, and D. A. Willoughby, “The formation of a structure with the features of synovial lining by subcutaneous injection of air: an in vivo tissue culture system,” Journal of Pathology, vol. 134, no. 2, pp. 147–156, 1981. View at Google Scholar · View at Scopus
  69. A. D. Sedgwick, Y. M. Sin, J. C. W. Edwards, and D. A. Willoughby, “Increased inflammatory reactivity in newly formed lining tissue,” Journal of Pathology, vol. 141, no. 4, pp. 483–495, 1983. View at Google Scholar · View at Scopus
  70. A. D. Sedgwick, M. S. Koh, D. A. Willoughby, and M. Pelletier, “Effects of sera and exudate from carrageenan-treated rats on two models of acute inflammation,” Agents and Actions, vol. 11, no. 5, pp. 477–481, 1981. View at Google Scholar · View at Scopus
  71. I. C. Kowanko, T. P. Gordon, M. A. M. Rozenbilds, P. M. Brooks, and P. J. Roberts-Thomson, “The subcutaneous air pouch model of synovium and the inflammatory response to heat aggregated gammaglobulin,” Agents and Actions, vol. 18, no. 3-4, pp. 421–428, 1986. View at Google Scholar · View at Scopus
  72. S. Yoshino, W. J. Cromartie, and J. H. Schwab, “Inflammation induced by bacterial cell wall fragments in the rat air pouch. Comparison of rat strains and measurement of arachidonic acid metabolites,” American Journal of Pathology, vol. 121, no. 2, pp. 327–336, 1985. View at Google Scholar · View at Scopus
  73. K. M. K. Bottomley, R. J. Griffiths, T. J. Rising, and A. Steward, “A modified mouse air pouch model for evaluating the effects of compounds on granuloma induced cartilage degradation,” British Journal of Pharmacology, vol. 93, no. 3, pp. 627–635, 1988. View at Google Scholar · View at Scopus
  74. Y. M. Sin, A. D. Sedgwick, and D. A. Willoughby, “Studies on the mechanism of cartilage degradation,” Journal of Pathology, vol. 142, no. 1, pp. 23–30, 1984. View at Google Scholar · View at Scopus
  75. V. Taneja, M. Behrens, A. Mangalam, M. M. Griffiths, H. S. Luthra, and C. S. David, “New humanized HLA-DR4-transgenic mice that mimic the sex bias of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 56, no. 1, pp. 69–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. A. K. Mangalam, G. Rajagopalan, V. Taneja, and C. S. David, “HLA class II transgenic mice mimic human inflammatory diseases,” Advances in Immunology, vol. 97, pp. 65–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Keffer, L. Probert, H. Cazlaris et al., “Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis,” EMBO Journal, vol. 10, no. 13, pp. 4025–4031, 1991. View at Google Scholar
  78. J. M. Milner and T. E. Cawston, “Matrix metalloproteinase knockout studies and the potential use of matrix metalloproteinase inhibitors in the rheumatic diseases,” Current Drug Targets, vol. 4, no. 3, pp. 363–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. A. S. Korganow, JI. Hong, S. Mangialaio et al., “From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins,” Immunity, vol. 10, no. 4, pp. 451–461, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Iwakura, “Roles of IL-1 in the development of rheumatoid arthritis: consideration from mouse models,” Cytokine and Growth Factor Reviews, vol. 13, no. 4-5, pp. 341–355, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. J. D. Taurog, J. A. Richardson, J. T. Croft et al., “The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats,” Journal of Experimental Medicine, vol. 180, no. 6, pp. 2359–2364, 1994. View at Publisher · View at Google Scholar · View at Scopus
  82. H. C. Rath, H. H. Herfarth, J. S. Ikeda et al., “Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human β2 microglobulin transgenic rats,” Journal of Clinical Investigation, vol. 98, no. 4, pp. 945–953, 1996. View at Google Scholar · View at Scopus
  83. A. Ebringer and C. Wilson, “HLA molecules, bacteria and autoimmunity,” Journal of Medical Microbiology, vol. 49, no. 4, pp. 305–311, 2000. View at Google Scholar · View at Scopus
  84. A. Larbi, T. Fülöp, and G. Pawelec, “Immune receptor signaling, aging and autoimmunity,” Advances in Experimental Medicine and Biology, vol. 640, pp. 312–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. S. M. Eck, J. S. Blackburn, A. C. Schmucker, P. S. Burrage, and C. E. Brinckerhoff, “Matrix metalloproteinase and G protein coupled receptors: co-conspirators in the pathogenesis of autoimmune disease and cancer,” Journal of Autoimmunity, vol. 33, no. 3-4, pp. 214–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. A. N. Theofilopoulos and F. J. Dixon, “Etiopathogenesis of murine SLE,” Immunological Reviews, vol. 55, no. 1, pp. 179–216, 1981. View at Google Scholar · View at Scopus
  87. L. Hang, A. N. Theofilopoulos, and F. J. Dixon, “A spontaneous rheumatoid arthritis-like disease in MRL/1 mice,” Journal of Experimental Medicine, vol. 155, no. 6, pp. 1690–1701, 1982. View at Google Scholar · View at Scopus
  88. V. E. Kelley and J. B. Roths, “Increase in macrophage Ia expression in autoimmune mice: role of the lpr gene,” Journal of Immunology, vol. 129, no. 3, pp. 923–925, 1982. View at Google Scholar · View at Scopus
  89. D. B. Magilavy, T. R. Hundley, A. D. Steinberg, and I. M. Katona, “Hepatic reticuloendothelial system activation in autoimmune mice: differences between (NZB x NZW)F and MRL-lpr/lpr strains,” Clinical Immunology and Immunopathology, vol. 42, no. 3, pp. 386–398, 1987. View at Google Scholar · View at Scopus
  90. A. Altman, A. N. Theofilopoulos, and R. Weiner, “Analysis of T cell function in autoimmune murine strains. Defects in production of and responsiveness to interleukin 2,” Journal of Experimental Medicine, vol. 154, no. 3, pp. 791–808, 1981. View at Google Scholar · View at Scopus
  91. D. B. Magilavy and J. L. Rothstein, “Spontaneous production of tumor necrosis factor α by Kupffer cells of MRL/lpr mice,” Journal of Experimental Medicine, vol. 168, no. 2, pp. 789–794, 1988. View at Google Scholar · View at Scopus
  92. R. L. Wilder and J. B. Allen, “Regulation of susceptibility to bacterial cell wall-induced arthritis in rats,” Arthritis and Rheumatism, vol. 28, no. 11, pp. 1318–1319, 1985. View at Google Scholar · View at Scopus
  93. M. Stolina, B. Bolon, D. Dwyer et al., “The evolving systemic and local biomarker milieu at different stages of disease progression in rat collagen-induced arthritis,” Biomarkers, vol. 13, no. 7-8, pp. 692–712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Stolina, B. Bolon, S. Middleton et al., “The evolving systemic and local biomarker milieu at different stages of disease progression in rat adjuvant-induced arthritis,” Journal of Clinical Immunology, vol. 29, no. 2, pp. 158–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. X. Y. Song, L. Zeng, W. Jin, C. M. Pilo, M. E. Frank, and S. M. Wahl, “Suppression of streptococcal cell wall-induced arthritis by human chorionic gonadotropin,” Arthritis and Rheumatism, vol. 43, no. 9, pp. 2064–2072, 2000. View at Google Scholar · View at Scopus
  96. D. E. Yocum, J. B. Allen, S. M. Wahl, G. B. Calandra, and R. L. Wilder, “Inhibition by cyclosporin A of streptococcal cell wall-induced arthritis and hepatic granulomas in rats,” Arthritis and Rheumatism, vol. 29, no. 2, pp. 262–273, 1986. View at Google Scholar · View at Scopus
  97. E. R. Pettipher, B. Henderson, T. Hardingham, and A. Ratcliffe, “Cartilage proteoglycan depletion in acute and chronic antigen-induced arthritis,” Arthritis and Rheumatism, vol. 32, no. 5, pp. 601–607, 1989. View at Google Scholar · View at Scopus
  98. W. J. Cromartie, J. G. Craddock, J. H. Schwab, S. K. Anderle, and C. H. Yang, “Arthritis in rats after systemic injection of streptococcal cells or cell walls,” Journal of Experimental Medicine, vol. 146, no. 6, pp. 1585–1602, 1977. View at Google Scholar · View at Scopus
  99. B. Bolon, G. Campagnuolo, and U. Feige, “Duration of bone protection afforded by a single injection of recombinant osteoprotegerin (OPG) in male Lewis rats with adjuvant arthritis,” Cellular and Molecular Life Sciences, vol. 59, no. 9, pp. 1569–1576, 2002. View at Google Scholar
  100. R. L. Clark, M. C. Marr, J. H. Schwab, and W. J. Cromartie, “Microangiographic studies of experimental erosive synovitis in rats,” Investigative Radiology, vol. 18, no. 3, pp. 257–263, 1983. View at Google Scholar · View at Scopus
  101. A. Coxon, B. Bolon, J. Estrada et al., “Inhibition of interleukin-1 but not tumor necrosis factor suppresses neovascularization in rat models of corneal angiogenesis and adjuvant arthritis,” Arthritis and Rheumatism, vol. 46, no. 10, pp. 2604–2612, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Bolon, S. Morony, Y. Cheng, Y. L. Hu, and U. Feige, “Osteoclast numbers in Lewis rats with adjuvant-induced arthritis: identification of preferred sites and parameters for rapid quantitative analysis,” Veterinary Pathology, vol. 41, no. 1, pp. 30–36, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. C. M. Pearson, “Development of arthritis, periarthritis and periostitis in rats given adjuvants,” Proceedings of the Society for Experimental Biology and Medicine, vol. 91, no. 1, pp. 95–101, 1965. View at Publisher · View at Google Scholar · View at Scopus
  104. F. G. Dalldorf, W. J. Cromartie, S. K. Anderle, R. L. Clark, and J. H. Schwab, “The relation of experimental arthritis to the distribution of streptococcal cell wall fragments,” American Journal of Pathology, vol. 100, no. 2, pp. 383–402, 1980. View at Google Scholar
  105. G. Schett, S. Middleton, B. Bolon et al., “Additive bone-protective effects of anabolic treatment when used in conjunction with RANKL and tumor necrosis factor inhibition in two rat arthritis models,” Arthritis and Rheumatism, vol. 52, no. 5, pp. 1604–1611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. J. D. Taurog, S. S. Kerwar, R. A. McReynolds, G. P. Sandberg, S. L. Leary, and M. L. Mahowald, “Synergy between adjuvant arthritis and collagen-induced arthritis in rats,” Journal of Experimental Medicine, vol. 162, no. 3, pp. 962–978, 1985. View at Google Scholar
  107. D. E. Trentham, R. A. Dynesius, R. E. Rocklin, and J. R. David, “Cellular sensitivity to collagen in rheumatoid arthritis,” New England Journal of Medicine, vol. 299, no. 7, pp. 327–332, 1978. View at Google Scholar · View at Scopus
  108. C. M. Pearson and F. D. Wood, “Passive transfer of adjuvant arthritis by lymph node or spleen cells,” Journal of Experimental Medicine, vol. 120, no. 4, pp. 547–560, 1964. View at Google Scholar · View at Scopus
  109. J. D. Taurog, G. P. Sandberg, and M. L. Mahowald, “The cellular basis of adjuvant arthritis. II. Characterization of the cells mediating passive transfer,” Cellular Immunology, vol. 80, no. 1, pp. 198–204, 1983. View at Google Scholar · View at Scopus
  110. D. E. Trentham, R. A. Dynesius, and J. R. David, “Passive transfer by cells of type II collagen-induced arthritis in rats,” Journal of Clinical Investigation, vol. 62, no. 2, pp. 359–366, 1978. View at Google Scholar · View at Scopus
  111. Y. Takai, N. Seki, H. Senoh et al., “Enhanced production of interleukin-6 in mice with type II collagen-induced arthritis,” Arthritis and Rheumatism, vol. 32, no. 5, pp. 594–600, 1989. View at Google Scholar · View at Scopus
  112. S. C. Ridge, J. B. Zabriske, A. L. Oronsky, and S. S. Kerwar, “Streptococcal cell wall arthritis: studies with nude (athymic) inbred Lewis rats,” Cellular Immunology, vol. 96, no. 1, pp. 231–234, 1985. View at Google Scholar · View at Scopus
  113. Y. Tada, K. Nagasawa, A. Ho et al., “CD28-deficient mice are highly resistant to collagen-induced arthritis,” Journal of Immunology, vol. 162, no. 1, pp. 203–208, 1999. View at Google Scholar · View at Scopus
  114. J. M. Stuart, M. A. Cremer, A. S. Townes, and A. H. Kang, “Type II collagen-induced arthritis in rats. Passive transfer with serum and evidence that IgG anticollagen antibodies can cause arthritis,” Journal of Experimental Medicine, vol. 155, no. 1, pp. 1–16, 1982. View at Google Scholar · View at Scopus
  115. M. Ehinger, M. Vestberg, A. C. M. Johansson, M. Johannesson, A. Svensson, and R. Holmdahl, “Influence of CD4 or CD8 deficiency on collagen-induced arthritis,” Immunology, vol. 103, no. 3, pp. 291–300, 2001. View at Publisher · View at Google Scholar · View at Scopus
  116. T. F. Kresina, I. A. Rosner, V. M. Goldberg, and R. W. Moskowitz, “Immunoglobulin G-induced experimental chronic immune synovitis: cell-mediated immunity to native interstitial collagen molecules and their constituent polypeptide chains,” Cellular Immunology, vol. 87, no. 2, pp. 504–516, 1984. View at Google Scholar
  117. T. F. Kresina, I. A. Rosner, V. M. Goldberg, and R. W. Moskowitz, “Fine specificity of serum anticollagen molecules in experimental immune synovitis,” Annals of the Rheumatic Diseases, vol. 44, no. 5, pp. 328–335, 1985. View at Google Scholar · View at Scopus
  118. H. K. Beard, R. Ryvar, J. Skingle, and C. L. Greenbury, “Anti-collagen antibodies in sera from rheumatoid arthritis patients,” Journal of Clinical Pathology, vol. 33, no. 11, pp. 1077–1081, 1980. View at Google Scholar · View at Scopus
  119. P. H. Wooley, H. S. Luthra, J. D. O'Duffy, T. W. Bunch, S. B. Moore, and J. M. Stuart, “Anti-type II collagen antibodies in rheumatoid arthritis. The influence of HLA phenotype,” Tissue Antigens, vol. 23, no. 5, pp. 263–269, 1984. View at Google Scholar
  120. L. Svensson, J. Jirholt, R. Holmdahl, and L. Jansson, “B cell-deficient mice do not develop type II collagen-induced arthritis (CIA),” Clinical and Experimental Immunology, vol. 111, no. 3, pp. 521–526, 1998. View at Publisher · View at Google Scholar · View at Scopus
  121. R. Janis and D. Hamerman, “Articular cartilage changes in early arthritis,” Bulletin of the Hospital for Joint Diseases, vol. 30, no. 2, pp. 136–152, 1969. View at Google Scholar · View at Scopus
  122. J. R. Hollister and M. Mannik, “Antigen retention in joint tissues in antigen induced synovitis,” Clinical and Experimental Immunology, vol. 16, no. 4, pp. 615–627, 1974. View at Google Scholar · View at Scopus
  123. S. S. Kerwar, M. E. Englert, R. A. McReynolds et al., “Type II collagen-induced arthritis. Studies with purified anticollagen immunoglobulin,” Arthritis and Rheumatism, vol. 26, no. 9, pp. 1120–1131, 1983. View at Google Scholar
  124. Z. Wu, K. Toh, K. Nagata, T. Kukita, and T. Iijima, “Effect of the resection of the sciatic nerve on the Th1/Th2 balance in the synovia of the ankle joint of adjuvant arthritic rats,” Histochemistry and Cell Biology, vol. 121, no. 2, pp. 141–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. E. Lubberts, “Th17 cytokines and arthritis,” Seminars in Immunopathology, vol. 32, no. 1, pp. 43–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman, “Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins,” Journal of Immunology, vol. 136, no. 7, pp. 2348–2357, 1986. View at Google Scholar
  127. M. Feldmann, F. M. Brennan, and R. N. Maini, “Role of cytokines in rheumatoid arthritis,” Annual Review of Immunology, vol. 14, pp. 397–440, 1996. View at Publisher · View at Google Scholar · View at Scopus
  128. W. B. van den Berg, “Joint inflammation and cartilage destruction may occur uncoupled,” Springer Seminars in Immunopathology, vol. 20, no. 1-2, pp. 149–164, 1998. View at Publisher · View at Google Scholar · View at Scopus
  129. N. C. Walsh and E. M. Gravallese, “Bone remodeling in rheumatic disease: a question of balance,” Immunological Reviews, vol. 233, no. 1, pp. 301–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. F. M. Brennan and I. B. McInnes, “Evidence that cytokines play a role in rheumatoid arthritis,” Journal of Clinical Investigation, vol. 118, no. 11, pp. 3537–3545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. S. C. Ridge, J. B. Zabriskie, H. Osawa, T. Diamantstein, A. L. Oronsky, and S. S. Kerwar, “Administration of group A streptococcal cell walls to rats induces an interleukin 2 deficiency,” Journal of Experimental Medicine, vol. 164, no. 1, pp. 327–332, 1986. View at Google Scholar
  132. W. P. Arend and J. M. Dayer, “Inhibition of the production and effects of interleukin-1 and tumor necrosis factor α in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 38, no. 2, pp. 151–160, 1995. View at Publisher · View at Google Scholar · View at Scopus
  133. F. M. Brennan, M. Field, C. Q. Chu, M. Feldmann, and R. N. Maini, “Cytokine expression in rheumatoid arthritis,” British Journal of Rheumatology, vol. 30, pp. 76–80, 1991. View at Google Scholar · View at Scopus
  134. C. Keller, A. Webb, and J. Davis, “Cytokines in the seronegative spondyloarthropathies and their modification by TNF blockade: a brief report and literature review,” Annals of the Rheumatic Diseases, vol. 62, no. 12, pp. 1128–1132, 2003. View at Publisher · View at Google Scholar
  135. S. Roberts and R. C. Butler, “Inflammatory mediators as potential therapeutic targets in the spine,” Current Drug Targets, vol. 4, no. 2, pp. 257–266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Stolina, G. Schett, D. Dwyer et al., “RANKL inhibition by osteoprotegerin prevents bone loss without affecting local or systemic inflammation parameters in two rat arthritis models: comparison with anti-TNFα or anti-IL-1 therapies,” Biomarkers, vol. 11, no. 6, p. R187, 2009. View at Google Scholar
  137. F. M. Brennan, R. N. Maini, and M. Feldmann, “Role of pro-inflammatory cytokines in rheumatoid arthritis,” Springer Seminars in Immunopathology, vol. 20, no. 1-2, pp. 133–147, 1998. View at Publisher · View at Google Scholar · View at Scopus
  138. W. B. van den Berg and P. Miossec, “IL-17 as a future therapeutic target for rheumatoid arthritis,” Nature Reviews Rheumatology, vol. 5, no. 10, pp. 549–553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. S. L. Gaffen, “Biology of recently discovered cytokines: interleukin-17—a unique inflammatory cytokine with roles in bone biology and arthritis,” Arthritis Research and Therapy, vol. 6, no. 6, pp. 240–247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. I. B. McInnes and J. A. Gracie, “Targeting cytokines beyond tumor necrosis factor-α and interleukin-1 in rheumatoid arthritis,” Current Rheumatology Reports, vol. 6, no. 5, pp. 336–342, 2004. View at Google Scholar · View at Scopus
  141. K. A. Bush, K. M. Farmer, J. S. Walker, and B. W. Kirkham, “Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein,” Arthritis and Rheumatism, vol. 46, no. 3, pp. 802–805, 2002. View at Publisher · View at Google Scholar · View at Scopus
  142. B. J. Rollins, “Monocyte chemoattractant protein 1: a potential regulator of monocyte recruitment in inflammatory disease,” Molecular Medicine Today, vol. 2, no. 5, pp. 198–204, 1996. View at Publisher · View at Google Scholar · View at Scopus
  143. L. Punzi, L. Calo, and M. Plebani, “Clinical significance of cytokine determination in synovial fluid,” Critical Reviews in Clinical Laboratory Sciences, vol. 39, no. 1, pp. 63–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  144. N. Maruotti, F. P. Cantatore, E. Crivellato, A. Vacca, and D. Ribatti, “Angiogenesis in rheumatoid arthritis,” Histology and Histopathology, vol. 21, no. 5, pp. 557–566, 2006. View at Google Scholar · View at Scopus
  145. M. Cutolo, B. Villaggio, L. Foppiani et al., “The hypothalamic-pituitary-adrenal and gonadal axes in rheumatoid arthritis,” Annals of the New York Academy of Sciences, vol. 917, pp. 835–843, 2000. View at Google Scholar · View at Scopus
  146. R. L. Wilder, “Hormones and autoimmunity: animal models of arthritis,” Bailliere's Clinical Rheumatology, vol. 10, no. 2, pp. 259–271, 1996. View at Publisher · View at Google Scholar · View at Scopus
  147. J. B. Allen, D. Blatter, G. B. Calandra, and R. L. Wilder, “Sex hormonal effects on the severity of streptococcal cell wall-induced polyarthritis in the rat,” Arthritis and Rheumatism, vol. 26, no. 4, pp. 560–563, 1983. View at Google Scholar · View at Scopus
  148. E. M. Sternberg, J. M. Hill, G. P. Chrousos et al., “Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 7, pp. 2374–2378, 1989. View at Google Scholar · View at Scopus
  149. M. Cutolo and R. H. Straub, “Stress as a risk factor in the pathogenesis of rheumatoid arthritis,” NeuroImmunomodulation, vol. 13, no. 5-6, pp. 277–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. M. P. Rogers, D. E. Trentham, W. J. McCune et al., “Abrogation of type II collagen-induced arthritis in rats by psychological stress,” Transactions of the Association of American Physicians, vol. 92, pp. 218–228, 1979. View at Google Scholar
  151. L. Probert, D. Plows, G. Kontogeorgos, and G. Kollias, “The type I interleukin-1 receptor acts in series with tumor necrosis factor (TNF) to induce arthritis in TNF-transgenic mice,” European Journal of Immunology, vol. 25, no. 6, pp. 1794–1797, 1995. View at Publisher · View at Google Scholar · View at Scopus
  152. G. Schett, K. Redlich, S. Hayer et al., “Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice,” Arthritis and Rheumatism, vol. 48, no. 7, pp. 2042–2051, 2003. View at Publisher · View at Google Scholar · View at Scopus
  153. E. Brahn, “Animal models of rheumatoid arthritis. Clues to etiology and treatment,” Clinical Orthopaedics and Related Research, no. 265, pp. 42–53, 1991. View at Google Scholar · View at Scopus
  154. X. Y. Song, M. Gu, W. W. Jin, D. M. Klinman, and S. M. Wahl, “Plasmid DNA encoding transforming growth factor-β1 suppresses chronic disease in a streptococcal cell wall-induced arthritis model,” Journal of Clinical Investigation, vol. 101, no. 12, pp. 2615–2621, 1998. View at Google Scholar · View at Scopus
  155. B. Bolon, V. Shalhoub, P. J. Kostenuik et al., “Osteoprotegerin, an endogenous antiosteoclast factor for protecting bone in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 46, no. 12, pp. 3121–3135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  156. Y. Kung, U. Felge, I. Sarosi et al., “Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand,” Nature, vol. 402, no. 6759, pp. 304–309, 1999. View at Publisher · View at Google Scholar
  157. S. W. Lee, J. M. Greve, D. Leaffer et al., “Early findings of small-animal MRI and small-animal computed tomography correlate with histological changes in a rat model of rheumatoid arthritis,” NMR in Biomedicine, vol. 21, no. 5, pp. 527–536, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. M. Noguchi, A. Kimoto, M. Sasamata, and K. Miyata, “Micro-CT imaging analysis for the effect of celecoxib, a cyclooxygenase-2 inhibitor, on inflammatory bone destruction in adjuvant arthritis rats,” Journal of Bone and Mineral Metabolism, vol. 26, no. 5, pp. 461–468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. L. Svensson, K. S. Nandakumar, A. Johansson, L. Jansson, and R. Holmdahl, “IL-4-deficient mice develop less acute but more chronic relapsing collagen-induced arthritis,” European Journal of Immunology, vol. 32, no. 10, pp. 2944–2953, 2002. View at Google Scholar · View at Scopus
  160. O. Kohashi, J. Kuwata, K. Umehara, F. Uemura, T. Takahashi, and A. Ozawa, “Susceptibility to adjuvant-induced arthritis among germfree, specific-pathogen-free, and conventional rats,” Infection and Immunity, vol. 26, no. 3, pp. 791–794, 1979. View at Google Scholar
  161. Z. Szekanecz, M. M. Halloran, M. V. Volin et al., “Temporal expression of inflammatory cytokines and chemokines in rat adjuvant-induced arthritis,” Arthritis and Rheumatism, vol. 43, no. 6, pp. 1266–1277, 2000. View at Google Scholar · View at Scopus
  162. N. Kaibara, T. Hotokebuchi, K. Takagishi, and I. Katsuki, “Paradoxical effects of cyclosporin A on collagen arthritis in rats,” Journal of Experimental Medicine, vol. 158, no. 6, pp. 2007–3015, 1983. View at Google Scholar · View at Scopus