Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 607480, 10 pages
http://dx.doi.org/10.1155/2011/607480
Research Article

Does Valproic Acid Induce Neuroendocrine Differentiation in Prostate Cancer?

1James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Marburg 205A, 600 North Wolfe Street, Baltimore, MD- 21287, USA
2Minimally Invasive Urologic Center, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250100, China
3Department of Pathology, Johns Hopkins University School of Medicine, 600 Wolfe Street, Baltimore, MD 21287, USA
4Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 North Broadway, Baltimore, MD 21231, USA

Received 3 June 2010; Revised 28 September 2010; Accepted 30 September 2010

Academic Editor: Christian Seiser

Copyright © 2011 Abhinav Sidana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Dokmanovic, C. Clarke, and P. A. Marks, “Histone deacetylase inhibitors: overview and perspectives,” Molecular Cancer Research, vol. 5, no. 10, pp. 981–989, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. P. A. Konstantinopoulos, M. V. Karamouzis, and A. G. Papavassiliou, “Focus on acetylation: the role of histone deacetylase inhibitors in cancer therapy and beyond,” Expert Opinion on Investigational Drugs, vol. 16, no. 5, pp. 569–571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. B. Glaser, “HDAC inhibitors: clinical update and mechanism-based potential,” Biochemical Pharmacology, vol. 74, no. 5, pp. 659–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Shabbeer, M. S. Q. Kortenhorst, S. Kachhap, N. Galloway, R. Rodriguez, and M. A. Carducci, “Multiple molecular pathways explain the anti-proliferative effect of valproic acid on Prostate cancer cells in vitro and in vivo,” The Prostate, vol. 67, no. 10, pp. 1099–1110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. Xia, J. Sung, W. Chowdhury et al., “Chronic administration of valproic acid inhibits Prostate cancer cell growth in vitro and in vivo,” Cancer Research, vol. 66, no. 14, pp. 7237–7244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. P. A. di Sant'Agnese, K. L. de Mesy Jensen, C. J. Churukian, and M. M. Agarwal, “Human prostatic endocrine-paracrine (APUD) cells. Distributional analysis with a comparison of serotonin and neuron-specific enolase immunoreactivity and silver stains,” Archives of Pathology and Laboratory Medicine, vol. 109, no. 7, pp. 607–612, 1985. View at Google Scholar · View at Scopus
  7. A. Komiya, H. Suzuki, T. Imamoto et al., “Neuroendocrine differentiation in the progression of Prostate cancer,” International Journal of Urology, vol. 16, no. 1, pp. 37–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. A. di Sant'Agnese, “Neuroendocrine differentiation in carcinoma of the Prostate: diagnostic, prognostic, and therapeutic implications,” Cancer, vol. 70, no. 1, pp. 254–268, 1992. View at Google Scholar · View at Scopus
  9. D. E. Frigo and D. P. McDonnell, “Differential effects of Prostate cancer therapeutics on neuroendocrine transdifferentiation,” Molecular Cancer Therapeutics, vol. 7, no. 3, pp. 659–669, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. F. Slovin, “Neuroendocrine differentiation in Prostate cancer: a sheep in wolf's clothing?” Nature Clinical Practice Urology, vol. 3, no. 3, pp. 138–144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Hirano, T. Jike, Y. Okada et al., “Immunohistochemical and ultrastructural features of neuroendocrine differentiated carcinomas of the Prostate: an immunoelectron microscopic study,” Ultrastructural Pathology, vol. 29, no. 5, pp. 367–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Valentini, M. Biancolella, F. Amati et al., “Valproic acid induces neuroendocrine differentiation and UGT2B7 up-regulation in human Prostate carcinoma cell line,” Drug Metabolism and Disposition, vol. 35, no. 6, pp. 968–972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. T. Adler, D. G. Hottinger, M. Kunnimalaiyaan, and H. Chen, “Histone deacetylase inhibitors upregulate Notch-1 and inhibit growth in pheochromocytoma cells,” Surgery, vol. 144, no. 6, pp. 956–962, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Y. Greenblatt, A. M. Vaccaro, R. Jaskula-Sztul et al., “Valproic acid activates Notch-1 signaling and regulates the neuroendocrine phenotype in carcinoid cancer cells,” Oncologist, vol. 12, no. 8, pp. 942–951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. S. Platta, D. Y. Greenblatt, M. Kunnimalaiyaan, and H. Chen, “Valproic acid induces Notch1 signaling in small cell lung cancer cells,” Journal of Surgical Research, vol. 148, no. 1, pp. 31–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. T. Adler, D. G. Hottinger, M. Kunnimalaiyaan, and H. Chen, “Combination therapy with histone deacetylase inhibitors and lithium chloride: a novel treatment for carcinoid tumors,” Annals of Surgical Oncology, vol. 16, no. 2, pp. 481–486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. T. Adler, D. G. Hottinger, M. Kunnimalaiyaan, and H. Chen, “Inhibition of growth in medullary thyroid cancer cells with histone deacetylase inhibitors and lithium chloride,” Journal of Surgical Research, vol. 159, no. 2, pp. 640–644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. M. Turnbull, M. D. Rawlins, D. Weightman, and D. W. Chadwick, “Plasma concentrations of sodium valproate: their clinical value,” Annals of Neurology, vol. 14, no. 1, pp. 38–42, 1983. View at Google Scholar · View at Scopus
  19. S. Zha, W. R. Gage, J. Sauvageot et al., “Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the Prostate, but not in Prostate carcinoma,” Cancer Research, vol. 61, no. 24, pp. 8617–8623, 2001. View at Google Scholar · View at Scopus
  20. S. Manley, N. R. Mucci, A. M. de Marzo, and M. A. Rubin, “Relational database structure to manage high-density tissue microarray data and images for pathology studies focusing on clinical outcome the Prostate specialized program of research excellence model,” American Journal of Pathology, vol. 159, no. 3, pp. 837–843, 2001. View at Google Scholar · View at Scopus
  21. D. A. Faith, W. B. Isaacs, J. D. Morgan et al., “Trefoil factor 3 overexpression in prostatic carcinoma: prognostic importance using tissue microarrays,” The Prostate, vol. 61, no. 3, pp. 215–227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. de Marzo, B. Knudsen, K. Chan-Tack, and J. I. Epstein, “E-cadherin expression as a marker of tumor aggressiveness in routinely processed radical Prostatectomy specimens,” Urology, vol. 53, no. 4, pp. 707–713, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Huang, C. Wu, P. A. di Sant'Agnese, J. L. Yao, L. Cheng, and Y. Na, “Function and molecular mechanisms of neuroendocrine cells in Prostate cancer,” Analytical and Quantitative Cytology and Histology, vol. 29, no. 3, pp. 128–138, 2007. View at Google Scholar · View at Scopus
  24. H. Bonkhoff, “Neuroendocrine differentiation in human Prostate cancer. Morphogenesis, proliferation and androgen receptor status,” Annals of Oncology, vol. 12, supplement 2, pp. S141–S144, 2001. View at Google Scholar · View at Scopus
  25. E. F. Tamas and J. I. Epstein, “Prognostic significance of Paneth cell-like neuroendocrine differentiation in adenocarcinoma of the Prostate,” American Journal of Surgical Pathology, vol. 30, no. 8, pp. 980–985, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Shimizu, J. Kumagai, Y. Eishi et al., “Frequency and number of neuroendocrine tumor cells in Prostate cancer: no difference between radical Prostatectomy specimens from patients with and without neoadjuvant hormonal therapy,” The Prostate, vol. 67, no. 6, pp. 645–652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Yamada, K. Nakamura, S. Aoki et al., “Is neuroendocrine cell differentiation detected using chromogranin A from patients with bone metastatic Prostate cancer a prognostic factor for outcome?” Oncology reports., vol. 15, no. 5, pp. 1309–1313, 2006. View at Google Scholar · View at Scopus
  28. E. Ishida, M. Nakamura, K. Shimada, M. Tasaki, and N. Konishi, “Immunohistochemical analysis of neuroendocrine differentiation in Prostate cancer,” Pathobiology, vol. 76, no. 1, pp. 30–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Weichert, A. Röske, V. Gekeler et al., “Histone deacetylases 1, 2 and 3 are highly expressed in Prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical Prostatectomy,” British Journal of Cancer, vol. 98, no. 3, pp. 604–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Pahlman, T. Esscher, and K. Nilsson, “Expression of γ-subunit of enolase, neuron-specific enolase, in human non-neuroendocrine tumors and derived cell lines,” Laboratory Investigation, vol. 54, no. 5, pp. 554–560, 1986. View at Google Scholar
  31. H. Haimoto, Y. Takahashi, T. Koshikawa, H. Nagura, and K. Kato, “Immunohistochemical localization of γ-enolase in normal human tissues other than nervous and neuroendocrine tissues,” Laboratory Investigation, vol. 52, no. 3, pp. 257–263, 1985. View at Google Scholar
  32. A. Angelsen, U. Syversen, O. A. Haugen, M. Stridsberg, O. KR. Mjølnerød, and H. L. Waldum, “Neuroendocrine differentiation in carcinomas of the Prostate: do neuroendocrine serum markers reflect immunohistochemical findings?” The Prostate, vol. 30, no. 1, pp. 1–6, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Kamiya, H. Suzuki, K. Kawamura et al., “Neuroendocrine differentiation in stage D2 Prostate cancers,” International Journal of Urology, vol. 15, no. 5, pp. 423–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. S. Q. Kortenhorst, S. Isharwal, P. J. van Diest et al., “Valproic acid causes dose- and time-dependent changes in nuclear structure in Prostate cancer cells in vitro and in vivo,” Molecular Cancer Therapeutics, vol. 8, no. 4, pp. 802–808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D.-S. Yu, D.-S. Hsieh, and S.-Y. Chang, “Modulation of Prostate carcinoma cell growth and apoptosis by chromogranin A,” Journal of Urology, vol. 170, no. 5, pp. 2031–2035, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Gong, J. Lee, H. Akio, P. N. Schlegel, and R. Shen, “Attenuation of apoptosis by chromogranin A-induced Akt and survivin pathways in Prostate cancer cells,” Endocrinology, vol. 148, no. 9, pp. 4489–4499, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. C.-S. Chen, S.-C. Weng, P.-H. Tseng, H.-P. Lin, and C.-S. Chen, “Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes,” Journal of Biological Chemistry, vol. 280, no. 46, pp. 38879–38887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. M. Jensen, A. F. Gazdar, F. Cuttitta, E. K. Russell, and R. I. Linnoila, “A comparison of synaptophysin, chromogranin, and L-dopa decarboxylase as markers for neuroendocrine differentiation in lung cancer cell lines,” Cancer Research, vol. 50, no. 18, pp. 6068–6074, 1990. View at Google Scholar · View at Scopus
  39. K. Takamatsu, B. Auerbach, R. Gerardy-Schahn, M. Eckhardt, G. Jaques, and N. Madry, “Characterization of tumor-associated neural cell adhesion molecule in human serum,” Cancer Research, vol. 54, no. 10, pp. 2593–2603, 1994. View at Google Scholar · View at Scopus