Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 830260, 9 pages
http://dx.doi.org/10.1155/2011/830260
Review Article

Autophagic and Apoptotic Effects of HDAC Inhibitors on Cancer Cells

Department of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan

Received 23 June 2010; Accepted 3 March 2011

Academic Editor: Patrick Matthias

Copyright © 2011 Hidemi Rikiishi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Shao, Z. Gao, P. A. Marks, and X. Jiang, “Apoptotic and autophagic cell death induced by histone deacetylase inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 52, pp. 18030–18035, 2004. View at Publisher · View at Google Scholar
  2. M. Esteller, “Molecular origins of cancer: epigenetics in cancer,” New England Journal of Medicine, vol. 358, no. 11, pp. 1148–1159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. L. Clayton, C. A. Hazzalin, and L. C. Mahadevan, “Enhanced histone acetylation and transcription: a dynamic perspective,” Molecular Cell, vol. 23, no. 3, pp. 289–296, 2006. View at Publisher · View at Google Scholar
  4. B. D. Strahl and C. D. Allis, “The language of covalent histone modifications,” Nature, vol. 403, no. 6765, pp. 41–45, 2000. View at Publisher · View at Google Scholar
  5. S. Balasubramanian, E. Verner, and J. J. Buggy, “Isoform-specific histone deacetylase inhibitors: the next step?” Cancer Letters, vol. 280, no. 2, pp. 211–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. A. Olsen, Y. H. Kim, T. M. Kuzel et al., “Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma,” Journal of Clinical Oncology, vol. 25, no. 21, pp. 3109–3115, 2007. View at Publisher · View at Google Scholar
  7. H. J. Mackay, H. Hirte, T. Colgan et al., “Phase II trial of the histone deacetylase inhibitor belinostat in women with platinum resistant epithelial ovarian cancer and micropapillary (LMP) ovarian tumours,” European Journal of Cancer, vol. 46, no. 9, pp. 1573–1579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. M. Vigushin, S. Ali, P. E. Pace et al., “Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo,” Clinical Cancer Research, vol. 7, no. 4, pp. 971–976, 2001. View at Google Scholar
  9. J. S. De Bono, R. Kristeleit, A. Tolcher et al., “Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors,” Clinical Cancer Research, vol. 14, no. 20, pp. 6663–6673, 2008. View at Publisher · View at Google Scholar
  10. G. Lopez, J. Liu, W. Ren et al., “Combining PCI-24781, a novel histone deacetylase inhibitor, with chemotherapy for the treatment of soft tissue sarcoma,” Clinical Cancer Research, vol. 15, no. 10, pp. 3472–3483, 2009. View at Publisher · View at Google Scholar
  11. M. Dickinson, D. Ritchie, D. J. DeAngelo et al., “Preliminary evidence of disease response to the pan deacetylase inhibitor panobinostat (LBH589) in refractory Hodgkin Lymphoma,” British Journal of Haematology, vol. 147, no. 1, pp. 97–101, 2009. View at Google Scholar
  12. C. Grant, F. Rahman, R. Piekarz et al., “Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors,” Expert Review of Anticancer Therapy, vol. 10, no. 7, pp. 997–1008, 2010. View at Publisher · View at Google Scholar
  13. K. B. Glaser, “HDAC inhibitors: clinical update and mechanism-based potential,” Biochemical Pharmacology, vol. 74, no. 5, pp. 659–671, 2007. View at Publisher · View at Google Scholar
  14. A. Hauschild, U. Trefzer, C. Garbe et al., “Multicenter phase II trial of the histone deacetylase inhibitor pyridylmethyl-N-{4-[(2-aminophenyl)-carbamoyl]-benzyl}-carbamate in pretreated metastatic melanoma,” Melanoma Research, vol. 18, no. 4, pp. 274–278, 2008. View at Publisher · View at Google Scholar
  15. P. Munster, D. Marchion, E. Bicaku et al., “Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC,” Clinical Cancer Research, vol. 15, no. 7, pp. 2488–2496, 2009. View at Publisher · View at Google Scholar
  16. L. McMahon, H. Tamary, M. Askin et al., “A randomized phase II trial of Arginine Butyrate with standard local therapy in refractory sickle cell leg ulcers,” British Journal of Haematology, vol. 151, no. 5, pp. 516–524, 2010. View at Publisher · View at Google Scholar
  17. W. S. Xu, R. B. Parmigiani, and P. A. Marks, “Histone deacetylase inhibitors: molecular mechanisms of action,” Oncogene, vol. 26, no. 37, pp. 5541–5552, 2007. View at Publisher · View at Google Scholar
  18. P. A. Marks and W.-S. Xu, “Histone deacetylase inhibitors: potential in cancer therapy,” Journal of Cellular Biochemistry, vol. 107, no. 4, pp. 600–608, 2009. View at Publisher · View at Google Scholar
  19. W. Weichert, A. Roske, V. Gekeler et al., “Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy,” British Journal of Cancer, vol. 98, no. 3, pp. 604–610, 2008. View at Publisher · View at Google Scholar
  20. L. Galluzzi, M. C. Maiuri, I. Vitale et al., “Cell death modalities: classification and pathophysiological implications,” Cell Death and Differentiation, vol. 14, no. 7, pp. 1237–1243, 2007. View at Publisher · View at Google Scholar
  21. G. Kroemer and M. Jaattela, “Lysosomes and autophagy in cell death control,” Nature Reviews Cancer, vol. 5, no. 11, pp. 886–897, 2005. View at Publisher · View at Google Scholar
  22. R. R. Rosato, J. A. Almenara, Y. Dai, and S. Grant, “Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells,” Molecular Cancer Therapeutics, vol. 2, no. 12, pp. 1273–1284, 2003. View at Google Scholar · View at Scopus
  23. J. Xu, J.-Y. Zhou, W.-Z. Wei, S. Philipsen, and G. S. Wu, “Sp1-mediated TRAIL induction in chemosensitization,” Cancer Research, vol. 68, no. 16, pp. 6718–6726, 2008. View at Publisher · View at Google Scholar
  24. Y. Dai, M. Rahmani, P. Dent, and S. Grant, “Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-κB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation,” Molecular and Cellular Biology, vol. 25, no. 13, pp. 5429–5444, 2005. View at Publisher · View at Google Scholar
  25. S. Fulda, “Modulation of TRAIL-induced apoptosis by HDAC inhibitors,” Current Cancer Drug Targets, vol. 8, no. 2, pp. 132–140, 2008. View at Publisher · View at Google Scholar
  26. M. Donadelli, C. Costanzo, S. Beghelli et al., “Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine,” Biochimica et Biophysica Acta, vol. 1773, no. 7, pp. 1095–1106, 2007. View at Publisher · View at Google Scholar
  27. P. Garcia-Morales, A. Gomez-Martinez, A. Carrato et al., “Histone deacetylase inhibitors induced caspase-independent apoptosis in human pancreatic adenocarcinoma cell lines,” Molecular Cancer Therapeutics, vol. 4, no. 8, pp. 1222–1230, 2005. View at Publisher · View at Google Scholar
  28. H. Y. Cohen, C. Miller, K. J. Bitterman et al., “Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase,” Science, vol. 305, no. 5682, pp. 390–392, 2004. View at Publisher · View at Google Scholar
  29. P. Fritsche, B. Seidler, S. Schüler et al., “HDAC2 mediates therapeutic resistance of pancreatic cancer cells via the BH3-only protein NOXA,” Gut, vol. 58, no. 10, pp. 1399–1409, 2009. View at Publisher · View at Google Scholar
  30. J. S. Carew, S. T. Nawrocki, and J. L. Cleveland, “Modulating autophagy for therapeutic benefit,” Autophagy, vol. 3, no. 5, pp. 464–467, 2007. View at Google Scholar
  31. J. S. Carew, E. C. Medina, J. A. Esquivel et al., “Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation,” Journal of Cellular and Molecular Medicine, vol. 14, no. 10, pp. 2448–2459, 2010. View at Publisher · View at Google Scholar
  32. S. Yamamoto, K. Tanaka, R. Sakimura et al., “Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or autophagy-associated cell death in chondrosarcoma cell lines,” Anticancer Research, vol. 28, no. 3A, pp. 1585–1591, 2008. View at Google Scholar · View at Scopus
  33. A. Hrzenjak, M.-L. Kremser, B. Strohmeier et al., “SAHA induces caspase-independent, autophagic cell death of endometrial stromal sarcoma cells by influencing the mTOR pathway,” Journal of Pathology, vol. 216, no. 4, pp. 495–504, 2008. View at Publisher · View at Google Scholar
  34. M. Watanabe, S. Adachi, H. Matsubara et al., “Induction of autophagy in malignant rhabdoid tumor cells by the histone deacetylase inhibitor FK228 through AIF translocation,” International Journal of Cancer, vol. 124, no. 1, pp. 55–67, 2009. View at Publisher · View at Google Scholar
  35. J. S. Carew, S. T. Nawrocki, C. N. Kahue et al., “Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance,” Blood, vol. 110, no. 1, pp. 313–322, 2007. View at Publisher · View at Google Scholar
  36. J. Long, J. Zhao, Z. Yan, Z. Liu, and N. Wang, “Antitumor effects of a novel sulfur-containing hydroxamate histone deacetylase inhibitor H40,” International Journal of Cancer, vol. 124, no. 5, pp. 1235–1244, 2009. View at Publisher · View at Google Scholar
  37. M. Oh, I.-K. Choi, and H. J. Kwon, “Inhibition of histone deacetylase1 induces autophagy,” Biochemical and Biophysical Research Communications, vol. 369, no. 4, pp. 1179–1183, 2008. View at Publisher · View at Google Scholar
  38. J.-Y. Lee, H. Koga, Y. Kawaguchi et al., “HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy,” EMBO Journal, vol. 29, no. 5, pp. 969–980, 2010. View at Publisher · View at Google Scholar
  39. L. Ellis, M. Bots, R. K. Lindemann et al., “The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy,” Blood, vol. 114, no. 2, pp. 380–393, 2009. View at Publisher · View at Google Scholar
  40. Y.-P. Yang, Z.-Q. Liang, Z.-L. Gu, and Z.-H. Qin, “Molecular mechanism and regulation of autophagy,” Acta Pharmacologica Sinica, vol. 26, no. 12, pp. 1421–1434, 2005. View at Publisher · View at Google Scholar
  41. C. Yu, M. Subler, M. Rahmani et al., “Induction of apoptosis in BCR/ABL+ cells by histone deacetylase inhibitors involves reciprocal effects on the RAF/MEK/ERK and JNK pathways,” Cancer Biology & Therapy, vol. 2, no. 5, pp. 544–551, 2003. View at Google Scholar
  42. A. J. Wilson, D.-S. Byun, N. Popova et al., “Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer,” Journal of Biological Chemistry, vol. 281, no. 19, pp. 13548–13558, 2006. View at Publisher · View at Google Scholar
  43. D. Mottet, S. Pirotte, V. Lamour et al., “HDAC4 represses p21 (WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism,” Oncogene, vol. 28, no. 2, pp. 243–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. K. S. Song, J. S. Kim, E. J. Yun et al., “Rottlerin induces autophagy and apoptotic cell death through a PKC-delta-independent pathway in HT1080 human fibrosarcoma cells: the protective role of autophagy in apoptosis,” Autophagy, vol. 4, no. 5, pp. 650–658, 2008. View at Google Scholar · View at Scopus
  45. H. Zhang, X. Kong, J. Kang et al., “Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells,” Toxicological Sciences, vol. 110, no. 2, pp. 376–388, 2009. View at Publisher · View at Google Scholar
  46. N. Kourtis and N. Tavernarakis, “Autophagy and cell death in model organisms,” Cell Death and Differentiation, vol. 16, no. 1, pp. 21–30, 2009. View at Publisher · View at Google Scholar
  47. K. W. Kim, M. Hwang, L. Moretti, J. J. Jaboin, Y. I. Cha, and B. Lu, “Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer,” Autophagy, vol. 4, no. 5, pp. 659–668, 2008. View at Google Scholar
  48. E. Morselli, E. Tasdemir, M. C. Maiuri et al., “Mutant p53 protein localized in the cytoplasm inhibits autophagy,” Cell Cycle, vol. 7, no. 19, pp. 3056–3061, 2008. View at Google Scholar
  49. R.-A. Gonzalez-Polo, P. Boya, A.-L. Pauleau et al., “The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death,” Journal of Cell Science, vol. 118, no. 14, pp. 3091–3102, 2005. View at Publisher · View at Google Scholar
  50. Z.-H. Wang, L. Xu, Z.-L. Duan et al., “Beclin 1-mediated macroautophagy involves regulation of caspase-9 expression in cervical cancer HeLa cells,” Gynecologic Oncology, vol. 107, no. 1, pp. 107–113, 2007. View at Publisher · View at Google Scholar
  51. S. Lorin, A. Borges, L. R. Dos Santos et al., “c-Jun NH2-terminal kinase activation is essential for DRAM-dependent induction of autophagyand apoptosis in 2-methoxyestradiol-treated Ewing sarcoma cells,” Cancer Research, vol. 69, no. 17, pp. 6924–6931, 2009. View at Publisher · View at Google Scholar
  52. A. Bommareddy, E. R. Hahm, D. Xiao et al., “Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells,” Cancer Research, vol. 69, no. 8, pp. 3704–3712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Yousefi, R. Perozzo, I. Schmid et al., “Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis,” Nature Cell Biology, vol. 8, no. 10, pp. 1124–1132, 2006. View at Publisher · View at Google Scholar
  54. E. Laane, K. P. Tamm, E. Buentke et al., “Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy,” Cell Death and Differentiation, vol. 16, no. 7, pp. 1018–1029, 2009. View at Publisher · View at Google Scholar
  55. J. Lin, Z. Zheng, Y. Li et al., “A novel Bcl-XL inhibitor Z36 that induces autophagic cell death in HeLa cells,” Autophagy, vol. 5, no. 3, pp. 314–320, 2009. View at Publisher · View at Google Scholar
  56. S. Pattingre, A. Tassa, X. Qu et al., “Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy,” Cell, vol. 122, no. 6, pp. 927–939, 2005. View at Publisher · View at Google Scholar
  57. M. Tiwari, V. K. Bajpai, A. A. Sahasrabuddhe et al., “Inhibition of N-(4-hydroxyphenyl)retinamide-induced autophagy at a lower dose enhances cell death in malignant glioma cells,” Carcinogenesis, vol. 29, no. 3, pp. 600–609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Shi, H.-N. Wang, S.-T. Xie et al., “Antimicrobial peptaibols, novel suppressors of tumor cells, targeted calcium-mediated apoptosis and autophagy in human hepatocellular carcinoma cells,” Molecular Cancer, vol. 9, no. 1, pp. 26–40, 2010. View at Publisher · View at Google Scholar
  59. Q. Cui, S.-I. Tashiro, S. Onodera, and T. Ikejima, “Augmentation of oridonin-induced apoptosis observed with reduced autophagy,” Journal of Pharmacological Sciences, vol. 101, no. 3, pp. 230–239, 2006. View at Publisher · View at Google Scholar
  60. P. Boya, R.-A. González-Polo, N. Casares et al., “Inhibition of macroautophagy triggers apoptosis,” Molecular and Cellular Biology, vol. 25, no. 3, pp. 1025–1040, 2005. View at Publisher · View at Google Scholar
  61. L. Ellis and R. Pili, “Histone deacetylase inhibitors: advancing therapeutic strategies in hematological and solid malignancies,” Pharmaceuticals, vol. 3, no. 8, pp. 2411–2469, 2010. View at Publisher · View at Google Scholar