Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 482096, 19 pages
Review Article

Bacterial Plasminogen Receptors Utilize Host Plasminogen System for Effective Invasion and Dissemination

1W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
2Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA

Received 5 April 2012; Revised 24 July 2012; Accepted 13 August 2012

Academic Editor: David M. Waisman

Copyright © 2012 Sarbani Bhattacharya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In order for invasive pathogens to migrate beyond the site of infection, host physiological barriers such as the extracellular matrix, the basement membrane, and encapsulating fibrin network must be degraded. To circumvent these impediments, proteolytic enzymes facilitate the dissemination of the microorganism. Recruitment of host proteases to the bacterial surface represents a particularly effective mechanism for enhancing invasiveness. Plasmin is a broad spectrum serine protease that degrades fibrin, extracellular matrices, and connective tissue. A large number of pathogens express plasminogen receptors which immobilize plasmin(ogen) on the bacterial surface. Surface-bound plasminogen is then activated by plasminogen activators to plasmin through limited proteolysis thus triggering the development of a proteolytic surface on the bacteria and eventually assisting the spread of bacteria. The host hemostatic system plays an important role in systemic infection. The interplay between hemostatic processes such as coagulation and fibrinolysis and the inflammatory response constitutes essential components of host defense and bacterial invasion. The goal of this paper is to highlight mechanisms whereby pathogenic bacteria, by engaging surface receptors, utilize and exploit the host plasminogen and fibrinolytic system for the successful dissemination within the host.