Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 815186, 9 pages
http://dx.doi.org/10.1155/2012/815186
Research Article

The Effects of Chronic Ingestion of Mercuric Chloride on Fertility and Testosterone Levels in Male Sprague Dawley Rats

1Department Biomedical Sciences, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, AL 36088, USA
2Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36049, USA

Received 21 March 2012; Accepted 6 May 2012

Academic Editor: João B. T. Rocha

Copyright © 2012 John C. Heath et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Meeker, M. G. Rossano, B. Protas et al., “Cadmium, lead, and other metals in relation to semen quality: human evidence for molybdenum as a male reproductive toxicant,” Environmental Health Perspectives, vol. 116, no. 11, pp. 1473–1479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Baranski, “Effects of the workplace on fertility and related reproductive outcomes,” Environmental Health Perspectives, vol. 101, no. 2, pp. 81–90, 1993. View at Google Scholar · View at Scopus
  3. S. Tas, R. Lauwerys, and D. Lison, “Occupational hazards for the male reproductive system,” Critical Reviews in Toxicology, vol. 26, no. 3, pp. 261–307, 1996. View at Google Scholar · View at Scopus
  4. L. Barregard, G. Lindstedt, A. Schutz, and G. Sallsten, “Endocrine function in mercury exposed chloralkali workers,” Occupational and Environmental Medicine, vol. 51, no. 8, pp. 536–540, 1994. View at Google Scholar · View at Scopus
  5. K. H. Alcser, K. A. Brix, L. J. Fine, L. R. Kallenbach, and R. A. Wolfe, “Occupational mercury exposure and male reproductive health,” American Journal of Industrial Medicine, vol. 15, no. 5, pp. 517–529, 1989. View at Google Scholar · View at Scopus
  6. C. M. Y. Choy, C. W. K. Lam, L. T. F. Cheung, C. M. Briton-Jones, L. P. Cheung, and C. J. Haines, “Infertility, blood mercury concentrations and dietary seafood consumption: a case-control study,” International Journal of Obstetrics and Gynaecology, vol. 109, no. 10, pp. 1121–1125, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Y. Leung, C. M. Y. Choy, S. F. Yim, C. W. K. Lam, and C. J. Haines, “Whole blood mercury concentrations in sub-fertile men in Hong Kong,” Australian and New Zealand Journal of Obstetrics and Gynaecology, vol. 41, no. 1, pp. 75–77, 2001. View at Google Scholar · View at Scopus
  8. H. I. Popescu, “Poisoning with alkylmercury compounds,” British Medical Journal, vol. 1, no. 6123, p. 1347, 1978. View at Google Scholar · View at Scopus
  9. A. K. Sharma, A. G. Kapadia, P. Fransis, and M. V. Rao, “Reversible effects of mercuric chloride on reproductive organs of the male mouse,” Reproductive Toxicology, vol. 10, no. 2, pp. 153–159, 1996. View at Google Scholar · View at Scopus
  10. A. Atkinson, S. J. Thompson, A. T. Khan et al., “Assessment of a two-generation reproductive and fertility study of mercuric chloride in rats,” Food and Chemical Toxicology, vol. 39, no. 1, pp. 73–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. T. K. Monsees, M. Franz, S. Gebhardt, U. Winterstein, W. B. Schill, and J. Hayatpour, “Sertoli cells as a target for reproductive hazards,” Andrologia, vol. 32, no. 4-5, pp. 239–246, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Arabi, “Bull spermatozoa under mercury stress,” Reproduction in Domestic Animals, vol. 40, no. 5, pp. 454–459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Arabi and M. S. Heydarnejad, “In vitro mercury exposure on spermatozoa from normospermic individuals,” Pakistan Journal of Biological Sciences, vol. 10, no. 15, pp. 2448–2453, 2007. View at Google Scholar · View at Scopus
  14. M. V. Rao and B. Gangadharan, “Antioxidative potential of melatonin against mercury induced intoxication in spermatozoa in vitro,” Toxicology In Vitro, vol. 22, no. 4, pp. 935–942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. Heath, Y. Abdelmageed, T. D. Braden, A. C. Nichols, and D. A. Steffy, “The effects of chronic mercuric chloride ingestion in female Sprague-Dawley rats on fertility and reproduction,” Food and Chemical Toxicology, vol. 47, no. 7, pp. 1600–1605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. T. Khan et al., “Mercury levels in target organs of male rats following multiple doses of mercuric cholride,” in Proceedings of the International Congress on the Health Effects of Hazardous Waste, Washington, DC, USA, 1995.
  17. A. T. Khan, T. C. Graham, J. E. Webster, D. M. Forester, and J. A. Ferguson, “Mercury levels in target organs of female rats following multiple doses of mercuric chloride,” Toxicologist, vol. 335, p. 12, 1996. View at Google Scholar
  18. National Toxiclogy Program, Technical Report on the Toxicology and Carcinogenesis Studies of Mercuric Chloride in F344 Rats and B6C3F1 Mice, NIH, 1993.
  19. J. D. Park, S. S. M. Habeebu, and C. D. Klaassen, “Testicular toxicity of di-(2-ethylhexyl)phthalate in young Sprague-Dawley rats,” Toxicology, vol. 171, no. 2-3, pp. 105–115, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. G. A. Wiggers, F. M. Peçanha, A. M. Briones et al., “Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries,” American Journal of Physiology, vol. 295, no. 3, pp. H1033–H1043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Boujbiha, K. Hamden, F. Guermazi et al., “Testicular toxicity in mercuric chloride treated rats: association with oxidative stress,” Reproductive Toxicology, vol. 28, no. 1, pp. 81–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. V. Rao and P. S. N. Sharma, “Protective effect of vitamin E against mercuric chloride reproductive toxicity in male mice,” Reproductive Toxicology, vol. 15, no. 6, pp. 705–712, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Homma-Takeda, Y. Kugenuma, T. Iwamuro, Y. Kumagai, and N. Shimojo, “Impairment of spermatogenesis in rats by methylmercury: involvement of stage- and cell- specific germ cell apoptosis,” Toxicology, vol. 169, no. 1, pp. 25–35, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. D. G. Ellingsen, J. Efskind, E. Haug, Y. Thomassen, I. Martinsen, and P. I. Gaarder, “Effects of low mercury vapour exposure on the thyroid function in chloralkali workers,” Journal of Applied Toxicology, vol. 20, no. 6, pp. 483–489, 2000. View at Google Scholar
  25. E. M. Erfurth, A. Schutz, A. Nilsson, L. Barregard, and S. Skerfving, “Normal pituitary hormone response to thyrotrophin and gonadotrophin releasing hormones in subjects exposed to elemental mercury vapour,” British Journal of Industrial Medicine, vol. 47, no. 9, pp. 639–644, 1990. View at Google Scholar · View at Scopus
  26. D. C. Cole, B. Wainman, L. H. Sanin, J. P. Weber, H. Muggah, and S. Ibrahim, “Environmental contaminant levels and fecundability among non-smoking couples,” Reproductive Toxicology, vol. 22, no. 1, pp. 13–19, 2006. View at Publisher · View at Google Scholar · View at Scopus