Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 924549, 12 pages
http://dx.doi.org/10.1155/2012/924549
Review Article

Mercury Toxicity on Sodium Pump and Organoseleniums Intervention: A Paradox

1Department of Biochemistry, Federal University of Technology, FUTA Road, PMB 704, Akure, Ondo State, Nigeria
2Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Sede Sur, Calzada de los Tenorios 235, Colonia Granjas Coapa, DF, 14330 México, Mexico

Received 9 April 2012; Accepted 1 July 2012

Academic Editor: João B. T. Rocha

Copyright © 2012 Ige Joseph Kade. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. J. Crinnion, “Environmental medicine, part three: long-term effects of chronic low- dose mercury exposure,” Alternative Medicine Review, vol. 5, no. 3, pp. 209–223, 2000. View at Google Scholar · View at Scopus
  2. T. Y. K. Chan, “Inorganic mercury poisoning associated with skin-lightening cosmetic products,” Clinical Toxicology, vol. 49, pp. 886–891, 2011. View at Publisher · View at Google Scholar
  3. R. A. Bernhoft, “Mercury toxicity and treatment: a review of the literature,” Journal of Environmental and Public Health, vol. 2012, Article ID 460508, 10 pages, 2012. View at Publisher · View at Google Scholar
  4. L. C. Masur, “A review of the use of mercury in historic and current ritualistic and spiritual practices,” Alternative Medicine Review, vol. 16, no. 4, pp. 314–320, 2011. View at Google Scholar
  5. P. Li, X. Feng, and G. Qiu, “Methylmercury exposure and health effects from rice and fish consumption: a review,” International Journal of Environmental Research and Public Health, vol. 7, no. 6, pp. 2666–2691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Geier, P. G. King, L. K. Sykes, and M. R. Geier, “A comprehensive review of mercury provoked autism,” Indian Journal of Medical Research, vol. 128, no. 4, pp. 383–411, 2008. View at Google Scholar · View at Scopus
  7. S. T. Schultz, “Does thimerosal or other mercury exposure increase the risk for autism? A review of current literature,” Acta Neurobiologiae Experimentalis, vol. 70, no. 2, pp. 187–195, 2010. View at Google Scholar · View at Scopus
  8. J. C. Skou, “The influence of some cations on an adenosine triphosphatase from peripheral nerves,” Biochimica et Biophysica Acta, vol. 23, pp. 394–401, 1957. View at Google Scholar · View at Scopus
  9. L. D. Faller, “Mechanistic studies of sodium pump,” Archives of Biochemistry and Biophysics, vol. 476, no. 1, pp. 12–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. L. Jorgensen and P. A. Pedersen, “Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na,K-ATPase,” Biochimica et Biophysica Acta, vol. 1505, no. 1, pp. 57–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. L. A. Vasilets and W. Schwarz, “Structure-function relationships of cation binding in the Na+/K+-ATPase,” Biochimica et Biophysica Acta, vol. 1154, no. 2, pp. 201–222, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. J. D. Robinson and P. R. Pratap, “Indicators of conformational changes in the Na+/K+-ATPase and their interpretation,” Biochimica et Biophysica Acta, vol. 1154, no. 1, pp. 83–104, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. G. E. Shull, A. Schwartz, and J. B. Lingrel, “Amino-acid sequence of the catalytic subunit of the (Na+- K+)ATPase deduced from a complementary DNA,” Nature, vol. 316, no. 6030, pp. 691–695, 1985. View at Google Scholar · View at Scopus
  14. R. L. Post and S. Kume, “Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine triphosphatase,” Journal of Biological Chemistry, vol. 248, no. 20, pp. 6993–7000, 1973. View at Google Scholar · View at Scopus
  15. E. M. Price, D. A. Rice, and J. B. Lingrel, “Structure-function studies of Na,K-ATPase. Site-directed mutagenesis of the border residues from the H1-H2 extracellular domain of the α subunit,” Journal of Biological Chemistry, vol. 265, no. 12, pp. 6638–6641, 1990. View at Google Scholar · View at Scopus
  16. K. Geering, I. Theulaz, F. Verrey, M. T. Hauptle, and B. C. Rossier, “A role for the β-subunit in the expression of functional Na+-K+-ATPase in Xenopus oocytes,” American Journal of Physiology, vol. 257, no. 5, pp. C851–C858, 1989. View at Google Scholar · View at Scopus
  17. M. Kawamura and S. Noguchi, “Possible role of the β-subunit in the expression of the sodium pump,” in The Sodium Pump: Structure, Mechanism, and Regulation, J. H. Kaplan and P. De-Weer, Eds., pp. 45–62, The Rockefeller University Press, New York, NY, USA, 1991. View at Google Scholar
  18. A. A. McDonough, K. Geering, and R. A. Farley, “The sodium pump needs its β subunit,” FASEB Journal, vol. 4, no. 6, pp. 1598–1605, 1990. View at Google Scholar · View at Scopus
  19. W. E. Harris and W. L. Stahl, “Origin of the γ polypeptide of the Na+/K+-ATPase,” Biochimica et Biophysica Acta, vol. 942, no. 2, pp. 236–244, 1988. View at Google Scholar · View at Scopus
  20. R. W. Mercer, D. Biemesderfer, D. P. Bliss, J. H. Collins, and B. Forbush, “Molecular cloning and immunological characterization of the γ-subunit of the Na, K-ATPase,” in The Sodium Pump: Recent Developments, P. DeWeer and J. Kaplan, Eds., pp. 37–41, Rockefeller University Press, New York, 1991. View at Google Scholar
  21. J. Castro and R. A. Farley, “Proteolytic fragmentation of the catalytic subunit of the sodium and potassium adenosine triphosphatase. Alignment of tryptic and chymotryptic fragments and location of sites labeled with ATP and iodoacetate,” Journal of Biological Chemistry, vol. 254, no. 7, pp. 2221–2228, 1979. View at Google Scholar · View at Scopus
  22. P. L. Jorgensen and J. P. Andersen, “Structural basis for E1-E2 conformational transitions in Na,K-pump and Ca-pump proteins,” Journal of Membrane Biology, vol. 103, no. 2, pp. 95–120, 1988. View at Google Scholar · View at Scopus
  23. M. Ohtsubo, S. Noguchi, K. Takeda, M. Morohashi, and M. Kawamura, “Site-directed mutagenesis of Asp-376, the catalytic phosphorylation site, and Lys-507, the putative ATP-binding site, of the α-subunit of Torpedo californica Na+/K+-ATPase,” Biochimica et Biophysica Acta, vol. 1021, no. 2, pp. 157–160, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. C. H. Pedemonte and J. H. Kaplan, “Chemical modification as an approach to elucidation of sodium pump structure-function relations,” American Journal of Physiology, vol. 258, no. 1, pp. C1–C23, 1990. View at Google Scholar · View at Scopus
  25. K. N. Dzhandzhugazyan, S. V. Lutsenko, and N. N. Modyanov, “Target-residues of the active site affinity modification are different in E1 and E2 forms,” in The Na+, K+-Pump. Part A: Molecular Aspects, J. C. Skou, J. G. Norby, A. B. Maunsbach, and M. Esmann, Eds., pp. 181–188, Alan R. Liss, New York, NY, USA, 1988. View at Google Scholar
  26. B. Vilsen, “Functional consequences of alterations to Pro328 and Leu332 located in the 4th transmembrane segment of the α-subunit of the rat kidney N+,K+-ATPase,” FEBS Letters, vol. 314, no. 3, pp. 301–307, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. J. P. Andersen and B. Vilsen, “Structural basis for the E1/E1P-E2/E2P conformation changes in the sarcoplasmic reticulum Ca2+-ATPase studied by site-specific mutagenesis,” Acta Physiologica Scandinavica, Supplement, vol. 146, no. 607, pp. 151–159, 1992. View at Google Scholar · View at Scopus
  28. S. Bhattacharya, S. Bose, B. Mukhopadhyay et al., “Specific binding of inorganic mercury to Na+-K+-ATPase in rat liver plasma membrane and signal transduction,” BioMetals, vol. 10, no. 3, pp. 157–162, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. H. J. Kramer, H. C. Gonick, and E. Lu, “In vitro inhibition of Na-K-ATPase by trace metals: relation to renal and cardiovascular damage,” Nephron, vol. 44, no. 4, pp. 329–336, 1986. View at Google Scholar · View at Scopus
  30. S. Magour, “Studies on the inhibition of brain synaptosomal Na+/K+-ATPase by mercury chloride and methyl mercury chloride,” Archives of Toxicology, vol. 9, pp. 393–396, 1986. View at Google Scholar · View at Scopus
  31. S. Magour, H. Maser, and H. Greim, “The effect of mercury chloride and methyl mercury on brain microsomal Na+-K+-ATPase after partial delipidisation with Lubrol,” Pharmacology and Toxicology, vol. 60, no. 3, pp. 184–186, 1987. View at Google Scholar · View at Scopus
  32. K. I. Ahammadsahib, R. Ramamurthi, and D. Dusaiah, “Mechanism of inhibition of rat brain (Na+-K+)-stimulated adenosine triphosphatase reaction by cadmium and methyl mercury,” Journal of Biochemical Toxicology, vol. 2, pp. 169–180, 1987. View at Google Scholar · View at Scopus
  33. K. I. Ahammad Sahib, K. S. Moorthy, and D. Desaiah, “Effects of methyl mercury and cadmium on the kinetics of substrate activation of (K+)-paranitrophenyl phosphatase,” Journal of Applied Toxicology, vol. 7, no. 3, pp. 221–226, 1987. View at Google Scholar · View at Scopus
  34. S. V. Kumar, S. Maitra, and S. Bhattacharya, “In vitro binding of inorganic mercury to the plasma membrane of rat platelet affects Na+-K+-ATPase activity and platelet aggregation,” BioMetals, vol. 15, no. 1, pp. 51–57, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Wang and J. D. Horisberger, “Mercury binding site on Na+/K+-ATPase: a cysteine in the first transmembrane segment,” Molecular Pharmacology, vol. 50, no. 3, pp. 687–691, 1996. View at Google Scholar · View at Scopus
  36. T. I. Omotayo, J. B. T. Rocha, E. O. Ibukun, and I. J. Kade, “Inorganic mercury interacts with thiols at the nucleotide and cationic binding sites of the ouabain-sensitive cerebral electrogenic sodium pump,” Neurochemistry International, vol. 58, no. 7, pp. 776–784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. I. J. Kade, T. I. Omotayo, and J. B. T. Rocha, “Threshold protective effect of glutathione on inorganic mercury inhibition of cerebral sodium pump,” Biochemistry-An Indian Journal, vol. 6, no. 2, pp. 65–70, 2012. View at Google Scholar
  38. J. J. Chuu, C. J. Hsu, and S. Y. Lin-Shiau, “Abnormal auditory brainstem responses for mice treated with mercurial compounds: involvement of excessive nitric oxide,” Toxicology, vol. 162, no. 1, pp. 11–22, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. J. J. Chuu, S. H. Liu, and S. Y. Lin-Shiau, “Effects of methyl mercury, mercuric sulfide and cinnabar on active avoidance responses, Na+/K+-ATPase activities and tissue mercury contents in rats,” Proceedings of the National Science Council, Republic of China B, vol. 25, no. 2, pp. 128–136, 2001. View at Google Scholar · View at Scopus
  40. Y. H. Young, J. J. Chuu, S. H. Liu, and S. Y. Lin-Shiau, “Neurotoxic mechanism of cinnabar and mercuric sulfide on the vestibulo-ocular reflex system of guinea pigs,” Toxicological Sciences, vol. 67, no. 2, pp. 256–263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. J. J. Chuu, S. H. Liu, and S. Y. Lin-Shiau, “Differential neurotoxic effects of methylmercury and mercuric sulfide in rats,” Toxicology Letters, vol. 169, no. 2, pp. 109–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. C. F. Huang, S. H. Liu, C. J. Hsu, and S. Y. Lin-Shiau, “Neurotoxicological effects of low-dose methylmercury and mercuric chloride in developing offspring mice,” Toxicology Letters, vol. 201, pp. 196–204, 2011. View at Google Scholar
  43. C. F. Huang, C. J. Hsu, S. H. Liu, and S. Y. Lin-Shiau, “Ototoxicity induced by cinnabar (a naturally occurring HgS) in mice through oxidative stress and down-regulated Na+/K+-ATPase activities,” NeuroToxicology, vol. 29, no. 3, pp. 386–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. C. F. Huang, C. J. Hsu, S. H. Liu, and S. Y. Lin-Shiau, “Neurotoxicological mechanism of methylmercury induced by low-dose and long-term exposure in mice: oxidative stress and down-regulated Na+/K+-ATPase involved,” Toxicology Letters, vol. 176, no. 3, pp. 188–197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. J. J. Chuu, Z. N. Huang, H. H. Yu, L. H. Chang, and S. Y. Lin-Shiau, “Attenuation by methyl mercury and mercuric sulfide of pentobarbital induced hypnotic tolerance in mice through inhibition of ATPase activities and nitric oxide production in cerebral cortex,” Archives of Toxicology, vol. 82, no. 6, pp. 343–353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. C. F. Huang, S. H. Liu, and S. Y. Lin-Shiau, “Neurotoxicological effects of cinnabar (a Chinese mineral medicine, HgS) in mice,” Toxicology and Applied Pharmacology, vol. 224, no. 2, pp. 192–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Chanez, M. A. Flexor, and J. M. Bourre, “Effect of organic and inorganic mercuric salts on Na+K+ATPase in different cerebral fractions in control in intrauterine growth-retarded rats: alterations induced by serotonin,” NeuroToxicology, vol. 10, no. 4, pp. 699–706, 1989. View at Google Scholar · View at Scopus
  48. S. R. Verma, M. Jain, and I. P. Tonk, “In vivo effect of mercuric chloride on tissue ATPases of Notopterus notopterus,” Toxicology Letters, vol. 16, no. 3-4, pp. 305–309, 1983. View at Google Scholar · View at Scopus
  49. D. R. Klonne and D. R. Johnson, “Enzyme activity and sulfhydryl status in rat renal cortex following mercuric chloride and dithiothreitol administration,” Toxicology Letters, vol. 42, no. 2, pp. 199–205, 1988. View at Google Scholar · View at Scopus
  50. G. Szumańska, R. Gadamski, and J. Albrecht, “Changes of the Na/K ATPase activity in the cerebral cortical microvessels of rat after single intraperitoneal administration of mercuric chloride: histochemical demonstration with light and electron microscopy,” Acta Neuropathologica, vol. 86, no. 1, pp. 65–70, 1993. View at Google Scholar · View at Scopus
  51. B. M. Anner, E. Imesch, and M. Moosmayer, “Normal sensitivity of Na+/K+-ATPase isolated from brain and kidney of spontaneously hypertensive rats to sodium, ouabain or mercury,” Biochimica et Biophysica Acta, vol. 1270, no. 1, pp. 95–99, 1995. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Mondal, B. Mukhopadhyay, and S. Bhattacharya, “Inorganic mercury binding to fish oocyte plasma membrane induces steroidogenesis and translatable messenger RNA synthesis,” BioMetals, vol. 10, no. 4, pp. 285–290, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. C. W. Nogueira, G. Zeni, and J. B. T. Rocha, “Organoselenium and organotellurium compounds: toxicology and pharmacology,” Chemical Reviews, vol. 104, no. 12, pp. 6255–6285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. C. W. Nogueira and J. B. T. Rocha, “Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds,” Archives of Toxicology, vol. 85, no. 11, pp. 1313–1359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. A. S. Prestes, S. T. Stefanello, S. M. Salman et al., “Antioxidant activity of b-selenoamines and their capacity to mimic different enzymes,” Molecular and Cellular Biochemistry, vol. 365, no. 1-2, pp. 85–92, 2012. View at Publisher · View at Google Scholar
  56. C. A. Prauchner, A. S. Prestes, and J. B. T. Rocha, “Effects of diphenyl diselenide on oxidative stress induced by sepsis in rats,” Pathology, vol. 207, pp. 554–558, 2011. View at Google Scholar
  57. A. S. Freitas and J. B. T. Rocha, “Diphenyl diselenide and analogs are substrates of cerebral rat thioredoxin reductase: a pathway for their neuroprotective effects,” Neuroscience Letters, vol. 503, pp. 1–5, 2011. View at Publisher · View at Google Scholar
  58. M. Ibrahim, M. Prigol, W. Hassan, C. W. Nogueira, and J. B. T. Rocha, “Protective effect of binaphthyl diselenide, a synthetic organoselenium compound, on 2-nitropropane-induced hepatotoxicity in rats,” Cell Biochemistry and Function, vol. 28, no. 4, pp. 258–265, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Ibrahim, C. Luchese, S. Pinton et al., “Involvement of catalase in the protective effect of binaphthyl diselenide against renal damage induced by glycerol,” Experimental and Toxicologic Pathology, vol. 63, no. 4, pp. 331–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. C. L. D. Corte, R. Fachinetto, R. Puntel et al., “Chronic treatment with fluphenazine alters parameters of oxidative stress in liver and kidney of rats,” Basic and Clinical Pharmacology and Toxicology, vol. 105, no. 1, pp. 51–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. D. H. Roos, R. L. Puntel, M. M. Santos et al., “Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: involvement of oxidative stress and glutamatergic system,” Toxicology in Vitro, vol. 23, no. 2, pp. 302–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. A. S. de Freitas, V. R. Funck, M. D. S. Rotta et al., “Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice,” Brain Research Bulletin, vol. 79, no. 1, pp. 77–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Soriano-García, “Organoselenium compounds as potential therapeutic and chemopreventive agents: a review,” Current Medicinal Chemistry, vol. 11, no. 12, pp. 1657–1669, 2004. View at Google Scholar · View at Scopus
  64. R. Naithani, “Organoselenium compounds in cancer chemoprevention,” Mini-Reviews in Medicinal Chemistry, vol. 8, no. 7, pp. 657–668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. K. El-Bayoumy and R. Sinha, “Mechanisms of mammary cancer chemoprevention by organoselenium compounds,” Mutation Research, vol. 551, no. 1-2, pp. 181–197, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. N. B. de Vargas Barbosa, C. W. Nogueira, T. N. Guecheva, M. de Lourdes Bellinaso, and J. B. T. Rocha, “Diphenyl diselenide supplementation delays the development of N-nitroso-N-methylurea-induced mammary tumors,” Archives of Toxicology, vol. 82, no. 9, pp. 655–663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. A. F. D. Bem, M. Farina, R. D. L. Portella et al., “Diphenyl diselenide, a simple glutathione peroxidase mimetic, inhibits human LDL oxidation in vitro,” Atherosclerosis, vol. 201, no. 1, pp. 92–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. F. C. Meotti, E. C. Stangherlin, G. Zeni, C. W. Nogueira, and J. B. T. Rocha, “Protective role of aryl and alkyl diselenides on lipid peroxidation,” Environmental Research, vol. 94, no. 3, pp. 276–282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Farina, M. Aschner, and J. B. T. Rocha, “Oxidative stress in MeHg-induced neurotoxicity,” Toxicology and Applied Pharmacology, vol. 256, no. 3, pp. 405–417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Farina, J. B. T. Rocha, and M. Aschner, “Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies,” Life Sciences, vol. 89, no. 15–16, pp. 555–563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Aschner, T. Syversen, D. O. Souza, J. B. T. Rocha, and M. Farina, “Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity,” Brazilian Journal of Medical and Biological Research, vol. 40, no. 3, pp. 285–291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. T. W. Clarkson and L. Magos, “The toxicology of mercury and its chemical compounds,” Critical Reviews in Toxicology, vol. 36, no. 8, pp. 609–662, 2006. View at Google Scholar
  73. R. Brandão, L. P. Borges, R. de Oliveira, J. B. T. Rocha, and C. W. Nogueira, “Diphenyl diselenide protects against hematological and immunological alterations induced by mercury in mice,” Journal of Biochemical and Molecular Toxicology, vol. 22, no. 5, pp. 311–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Brandão, F. W. Santos, M. Farina et al., “Antioxidants and metallothionein levels in mercury-treated mice,” Cell Biology and Toxicology, vol. 22, no. 6, pp. 429–438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. D. F. Meinerz, M. T. de Paula, B. Comparsi et al., “Protective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions,” Brazilian Journal of Medical and Biological Research, vol. 44, pp. 1156–1163, 2011. View at Google Scholar
  76. R. Brandão, R. N. Moresco, L. P. Bellé et al., “Diphenyl diselenide potentiates nephrotoxicity induced by mercuric chloride in mice,” Journal of Applied Toxicology, vol. 31, pp. 773–782, 2011. View at Google Scholar
  77. M. Farina, F. A. A. Soares, G. Zeni, D. O. Souza, and J. B. T. Rocha, “Additive pro-oxidative effects of methylmercury and ebselen in liver from suckling rat pups,” Toxicology Letters, vol. 146, no. 3, pp. 227–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Perottoni, O. E. D. Rodrigues, M. W. Paixão et al., “Renal and hepatic ALA-D activity and selected oxidative stress parameters of rats exposed to inorganic mercury and organoselenium compounds,” Food and Chemical Toxicology, vol. 42, no. 1, pp. 17–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Perottoni, L. P. Lobato, A. Silveira, J. B. T. Rocha, and T. Emanuelli, “Effects of mercury and selenite on δ-aminolevulinate dehydratase activity and on selected oxidative stress parameters in rats,” Environmental Research, vol. 95, no. 2, pp. 166–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. Z. Yin, E. Lee, M. Ni et al., “Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen,” NeuroToxicology, vol. 32, no. 3, pp. 291–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. C. A. Brüning, M. Prigol, D. A. Barancelli, C. W. Nogueira, and G. Zeni, “Disubstituted diaryl diselenides inhibit δ-ALA-D and Na+, K+-ATPase activities in rat brain homogenates in vitro,” Molecular and Cellular Biochemistry, vol. 332, no. 1-2, pp. 17–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. V. C. Borges, J. B. T. Rocha, and C. W. Nogueira, “Effect of diphenyl diselenide, diphenyl ditelluride and ebselen on cerebral Na+, K+-ATPase activity in rats,” Toxicology, vol. 215, no. 3, pp. 191–197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. N. B. V. Barbosa, J. B. T. Rocha, D. C. Wondracek, J. Perottoni, G. Zeni, and C. W. Nogueira, “Diphenyl diselenide reduces temporarily hyperglycemia: possible relationship with oxidative stress,” Chemico-Biological Interactions, vol. 163, no. 3, pp. 230–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. N. B. V. Barbosa, J. B. T. Rocha, J. C. M. Soares et al., “Dietary diphenyl diselenide reduces the STZ-induced toxicity,” Food and Chemical Toxicology, vol. 46, no. 1, pp. 186–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. I. J. Kade, C. W. Nogueira, and J. B. T. Rocha, “Diphenyl diselenide and streptozotocin did not alter cerebral glutamatergic and cholinergic systems but modulate antioxidant status and sodium pump in diabetic rats,” Brain Research, vol. 1284, pp. 202–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. I. J. Kade and J. B. T. Rocha, “Comparative study on the influence of subcutaneous administration of diphenyl and dicholesteroyl diselenides on sulphydryl proteins and antioxidant parameters in mice,” Journal of Applied Toxicology, vol. 30, no. 7, pp. 688–693, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. F. C. Meotti, V. C. Borges, J. Perottoni, and C. W. Nogueira, “Toxicological evaluation of subchronic exposure to diphenyl diselenide in rats,” Journal of Applied Toxicology, vol. 28, no. 5, pp. 638–644, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Prigol, E. A. Wilhelm, C. C. Schneider, J. B. T. Rocha, C. W. Nogueira, and G. Zeni, “Involvement of oxidative stress in seizures induced by diphenyl diselenide in rat pups,” Brain Research, vol. 1147, no. 1, pp. 226–232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Prigol, E. A. Wilhelm, E. C. Stangherlin, D. A. Barancelli, C. W. Nogueira, and G. Zeni, “Diphenyl diselenide-induced seizures in rat pups: possible interaction with glutamatergic system,” Neurochemical Research, vol. 33, no. 6, pp. 996–1004, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. O. P. Mishra, M. Delivoria-Papadopoulos, G. Cahillane, and L. C. Wagerle, “Lipid peroxidation as the mechanism of modification of the affinity of the Na+, K+-ATPase active sites for ATP, K+, Na+, and strophanthidin in vitro,” Neurochemical Research, vol. 14, no. 9, pp. 845–851, 1989. View at Google Scholar · View at Scopus
  91. H. Khan, M. F. Khan, S. U. Jan, M. Mukhtiar, N. Ullah, and N. Anwar, “Role of Glutathione in protection against mercury induced poisoning,” Pakistan Journal of Pharmaceutical Science, vol. 25, no. 2, pp. 395–400, 2012. View at Google Scholar
  92. W. Hassan, S. Pinton, J. T. D. Rocha et al., “Hydroxyl containing seleno-imine compound exhibits improved anti-oxidant potential and does not inhibit thiol-containing enzymes,” Chemico-Biological Interactions, vol. 190, no. 1, pp. 35–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. W. E. Maier and L. G. Costa, “Na+/K+-ATPase in rat brain and erythrocytes as a possible target and marker, respectively, for neurotoxicity: studies with chlordecone, organotins and mercury compounds,” Toxicology Letters, vol. 51, no. 2, pp. 175–188, 1990. View at Google Scholar · View at Scopus