Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 147307, 6 pages
http://dx.doi.org/10.1155/2013/147307
Research Article

Phytic Acid Inhibits Lipid Peroxidation In Vitro

1Department of Biopharmacy, Medical University of Silesia, 40-055 Katowice, Poland
2Department of Biochemistry, Medical University of Silesia, 40-055 Katowice, Poland

Received 27 June 2013; Accepted 8 September 2013

Academic Editor: Filippo De Simone

Copyright © 2013 Alicja Zajdel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Gülçin, “Antioxidant activity of food constituents: an overview,” Archives of Toxicology, vol. 86, no. 3, pp. 345–396, 2012. View at Google Scholar
  2. R. J. Schaur, “Basic aspects of the biochemical reactivity of 4-hydroxynonenal,” Molecular Aspects of Medicine, vol. 24, no. 4-5, pp. 149–159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Barrera, S. Pizzimenti, S. Laurora, F. Briatore, C. Toaldo, and M. U. Dianzani, “4-Hydroxynonenal and cell cycle,” BioFactors, vol. 24, no. 1–4, pp. 151–157, 2005. View at Google Scholar · View at Scopus
  4. M. Gago-Dominguez, X. Jiang, and J. E. Castelao, “Lipid peroxidation, oxidative stress genes and dietary factors in breast cancer protection: a hypothesis,” Breast Cancer Research, vol. 9, no. 1, article 201, 2007. View at Google Scholar · View at Scopus
  5. S. Yara, J. C. Lavoie, J. F. Beaulieu et al., “Iron-ascorbate-mediated lipid peroxidation causes epigenetic changes in the antioxidant defense in intestinal epithelial cells: impact on inflammation,” PLoS ONE, vol. 8, no. 5, Article ID e63456, 2013. View at Google Scholar
  6. E. Graf and J. W. Eaton, “Antioxidant functions of phytic acid,” Free Radical Biology and Medicine, vol. 8, no. 1, pp. 61–69, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Vucenik and A. M. Shamsuddin, “Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic,” Journal of Nutrition, vol. 133, no. 11, pp. 3778S–3784S, 2003. View at Google Scholar · View at Scopus
  8. H.-J. Lee, S.-A. Lee, and H. Choi, “Dietary administration of inositol and/or inositol-6-phosphate prevents chemically-induced rat hepatocarcinogenesis,” Asian Pacific Journal of Cancer Prevention, vol. 6, no. 1, pp. 41–47, 2005. View at Google Scholar · View at Scopus
  9. M. E. Norhaizan, S. K. Ng, M. S. Norashareena, and M. A. Abdah, “Antioxidant and cytotoxicity effect of rice bran phytic acid as an anticancer agent on ovarian, breast and liver cancer cell lines,” Malaysian Journal of Nutrition, vol. 17, no. 3, pp. 367–375, 2011. View at Google Scholar
  10. M. Y. Kang, S. M. Kim, C. W. Rico, and S. C. Lee, “Hypolipidemic and antioxidative effects of rice bran and phytic acid in high fat-fed mice,” The Food Science and Biotechnology, vol. 21, no. 1, pp. 123–128, 2012. View at Google Scholar
  11. C. N. Kunyanga, J. K. Imungi, M. W. Okoth, H. K. Biesalski, and V. Vadivel, “Antioxidant and type 2 diabetes related functional properties of phytic acid extract from kenyan local food ingredients: effects of traditional processing methods,” Ecology of Food and Nutrition, vol. 50, no. 5, pp. 452–471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. U. Schlemmer, W. Frølich, R. M. Prieto, and F. Grases, “Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis,” Molecular Nutrition and Food Research, vol. 53, no. 2, pp. S330–S375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Graf, K. L. Empson, and J. W. Eaton, “Phytic acid. A natural antioxidant,” Journal of Biological Chemistry, vol. 262, no. 24, pp. 11647–11650, 1987. View at Google Scholar · View at Scopus
  14. I. Gülçin, S. Beydemir, H. A. Alici, M. Elmastaş, and M. E. Büyükokuroğlu, “In vitro antioxidant properties of morphine,” Pharmacological Research, vol. 49, no. 1, pp. 59–66, 2004. View at Google Scholar
  15. T. C. P. Dinis, V. M. C. Madeira, and L. M. Almeida, “Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers,” Archives of Biochemistry and Biophysics, vol. 315, no. 1, pp. 161–169, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Wȩglarz, J. Wawszczyk, A. Orchel, M. Jaworska-Kik, and Z. Dzierzewicz, “Phytic acid modulates in vitro IL-8 and IL-6 release from colonic epithelial cells stimulated with LPS and IL-1β,” Digestive Diseases and Sciences, vol. 52, no. 1, pp. 93–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Esterbauer, K. H. Cheeseman, and M. U. Dianzani, “Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes,” Biochemical Journal, vol. 208, no. 1, pp. 129–140, 1982. View at Google Scholar · View at Scopus
  18. N. Deighton, W. J. Magill, D. H. Bremner, and E. E. Benson, “Malondialdehyde and 4-hydroxy-2-nonenal in plant tissue cultures: LC-MS determination of 2,4-dinitrophenylhydrazone derivatives,” Free Radical Research, vol. 27, no. 3, pp. 255–265, 1997. View at Google Scholar · View at Scopus
  19. R. L. Prior, X. Wu, and K. Schaich, “Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements,” Journal of Agricultural and Food Chemistry, vol. 53, no. 10, pp. 4290–4302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H. J. Ahn, J. H. Kim, H. S. Yook, and M. W. Byun, “Irradiation effects on free radical scavenging and antioxidant activity of phytic acid,” Journal of Food Science, vol. 68, no. 7, pp. 2221–2224, 2003. View at Google Scholar · View at Scopus
  21. H.-R. Park, H.-J. Ahn, J.-H. Kim et al., “Effects of irradiated phytic acid on antioxidation and color stability in meat models,” Journal of Agricultural and Food Chemistry, vol. 52, no. 9, pp. 2572–2576, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. H.-J. Ahn, J.-H. Kim, C. Jo, M.-J. Kim, and M.-W. Byun, “Comparison of irradiated phytic acid and other antioxidants for antioxidant activity,” Food Chemistry, vol. 88, no. 2, pp. 173–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Sakač, J. Čanadanović-Brunet, A. Mišan, V. Tumbas, and Đ. Medić, “Antioxidant activity of phytic acid in lipid model system,” Food Technology and Biotechnology, vol. 48, no. 4, pp. 524–529, 2010. View at Google Scholar
  24. C. Canan, F. Delaroza, R. Casagrande, M. M. Baracat, M. Shimokomaki, and E. I. Ida, “Antioxidant capacity of phytic acid purified from rice bran,” Acta Scientiarum, vol. 34, no. 4, pp. 457–463, 2012. View at Google Scholar
  25. G. Minotti and S. D. Aust, “Redox cycling of iron and lipid peroxidation,” Lipids, vol. 27, no. 3, pp. 219–226, 1992. View at Google Scholar · View at Scopus
  26. S. Miyamoto, G. Kuwata, M. Imai, A. Nagao, and J. Terao, “Protective effect of phytic acid hydrolysis products on iron-induced lipid peroxidation of liposomal membranes,” Lipids, vol. 35, no. 12, pp. 1411–1413, 2000. View at Google Scholar · View at Scopus
  27. B. Stodolak, A. Starzyńska, M. Czyszczoń, and K. Żyła, “The effect of phytic acid on oxidative stability of raw and cooked meat,” Food Chemistry, vol. 101, no. 3, pp. 1041–1045, 2007. View at Google Scholar
  28. B. J. Lee and D. G. Hendricks, “Protective effect of phytic acid against lipid peroxidation in beef round muscle,” Journal of Food Science, vol. 60, no. 2, pp. 241–244, 1995. View at Google Scholar
  29. B. J. Lee, D. G. Hendricks, and D. P. Cornforth, “Antioxidant effects of carnosine and phytic acid in a model beef system,” Journal of Food Science, vol. 63, no. 3, pp. 394–398, 1998. View at Google Scholar · View at Scopus
  30. M. A. Sorour and T. Ohshima, “Inhibitory effects of phytic acid as a natural antioxidant in prevention of fish oil peroxidation,” Lucrari Stiintifice, vol. 53, no. 15, pp. 241–246, 2010. View at Google Scholar
  31. D. R. Janero, “Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury,” Free Radical Biology and Medicine, vol. 9, no. 6, pp. 515–540, 1990. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Liu, H. C. Yeo, S. J. Doniger, and B. N. Ames, “Assay of aldehydes from lipid peroxidation: gas chromatography-mass spectrometry compared to thiobarbituric acid,” Analytical Biochemistry, vol. 245, no. 2, pp. 161–166, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Andreoli, P. Manini, M. Corradi, A. Mutti, and W. M. A. Niessen, “Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/atmospheric chemical ionization tandem mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 17, no. 7, pp. 637–645, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Porres, C. H. Stahl, W.-H. Cheng et al., “Dietary intrinsic phytate protects colon from lipid peroxidation in pigs with a moderately high dietary iron intake,” Proceedings of the Society for Experimental Biology and Medicine, vol. 221, no. 1, pp. 80–86, 1999. View at Google Scholar · View at Scopus
  35. R. L. Nelson, S. J. Yoo, J. C. Tanure, G. Andrianopoulos, and A. Misumi, “The effect of iron on experimental colorectal carcinogenesis,” Anticancer Research, vol. 9, no. 6, pp. 1477–1482, 1989. View at Google Scholar · View at Scopus
  36. A. Singh, S. P. Singh, and R. Bamezai, “Modulatory influence of arecoline on the phytic acid-altered hepatic biotransformation system enzymes, sulfhydryl content and lipid peroxidation in a murine system,” Cancer Letters, vol. 117, no. 1, pp. 1–6, 1997. View at Publisher · View at Google Scholar · View at Scopus