Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 608728, 9 pages
http://dx.doi.org/10.1155/2013/608728
Research Article

Differentiation of Induced Pluripotent Stem Cells into Male Germ Cells In Vitro through Embryoid Body Formation and Retinoic Acid or Testosterone Induction

1Shanghai Human Sperm Bank, Department of Urology, Shanghai Institute of Andrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
2Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
3BIO-X Center, Shanghai Jiao Tong University, Shanghai 200240, China
4Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
5State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China

Received 14 July 2012; Accepted 8 September 2012

Academic Editor: Xuan Jin

Copyright © 2013 Peng Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. De Kretser and H. W. G. Baker, “Infertility in men: recent advances and continuing controversies,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3443–3450, 1999. View at Google Scholar · View at Scopus
  2. J. P. Jarow, M. A. Espeland, and L. I. Lipshultz, “Evaluation of the azoospermic patient,” Journal of Urology, vol. 142, no. 1, pp. 62–65, 1989. View at Google Scholar · View at Scopus
  3. G. M. Willott, “Frequency of azoospermia,” Forensic Science International, vol. 20, no. 1, pp. 9–10, 1982. View at Google Scholar · View at Scopus
  4. K. Matsumiya, M. Namiki, S. Takahara et al., “Clinical study of azoospermia,” International Journal of Andrology, vol. 17, no. 3, pp. 140–142, 1994. View at Google Scholar · View at Scopus
  5. K. Hübner, G. Fuhrmann, L. K. Christenson et al., “Derivation of oocytes from mouse embryonic stem cells,” Science, vol. 300, no. 5623, pp. 1251–1256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Nayernia, J. Nolte, H. W. Michelmann et al., “In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice,” Developmental Cell, vol. 11, no. 1, pp. 125–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Yu, P. Ji, J. Cao et al., “Dazl promotes germ cell differentiation from embryonic stem cells,” The Journal of Molecular Cell Biology, vol. 1, no. 2, pp. 93–103, 2009. View at Google Scholar
  8. B. Aflatoonian, L. Ruban, M. Jones, R. Aflatoonian, A. Fazeli, and H. D. Moore, “In vitro post-meiotic germ cell development from human embryonic stem cells,” Human Reproduction, vol. 24, no. 12, pp. 3150–3159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. F. Chen, H. C. Kuo, C. L. Chien et al., “Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation,” Human Reproduction, vol. 22, no. 2, pp. 567–577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. T. Clark, M. S. Bodnar, M. Fox et al., “Spontaneous differentiation of germ cells from human embryonic stem cells in vitro,” Human Molecular Genetics, vol. 13, no. 7, pp. 727–739, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Kee, J. M. Gonsalves, A. T. Clark, and R. A. Reijo Pera, “Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells,” Stem Cells and Development, vol. 15, no. 6, pp. 831–837, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Mikkola, C. Olsson, J. Palgi et al., “Distinct differentiation characteristics of individual human embryonic stem cell lines,” BMC Developmental Biology, vol. 6, article 40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Tilgner, S. P. Atkinson, A. Golebiewska, M. Stojković, M. Lako, and L. Armstrong, “Isolation of primordial germ cells from differentiating human embryonic stem cells,” Stem Cells, vol. 26, no. 12, pp. 3075–3085, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. F. D. West, D. W. Machacek, N. L. Boyd, K. Pandiyan, K. R. Robbins, and S. L. Stice, “Enrichment and differentiation of human germ-like cells mediated by feeder cells and basic fibroblast growth factor signaling,” Stem Cells, vol. 26, no. 11, pp. 2768–2776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. West, I. H. Park, G. Q. Daley, and N. Geijsen, “In vitro generation of germ cells from murine embryonic stem cells,” Nature Protocols, vol. 1, no. 4, pp. 2026–2036, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Y. Zhao, W. Li, Z. Lv et al., “IPS cells produce viable mice through tetraploid complementation,” Nature, vol. 461, no. 7260, pp. 86–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Hanna, M. Wernig, S. Markoulaki et al., “Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin,” Science, vol. 318, no. 5858, pp. 1920–1923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Imamura, T. Aoi, A. Tokumasu et al., “Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes,” Molecular Reproduction and Development, vol. 77, no. 9, pp. 802–811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. S. Park, Z. Galic, A. E. Conway et al., “Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells,” Stem Cells, vol. 27, no. 4, pp. 783–795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Hayashi, H. Ohta, K. Kurimoto, S. Aramaki, and M. Saitou, “Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells,” Cell, vol. 146, no. 4, pp. 519–532, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Li, H. Yu, Y. Ma et al., “Germline-competent mouse-induced pluripotent stem cell lines generated on human fibroblasts without exogenous leukemia inhibitory factor,” PLoS ONE, vol. 4, no. 8, Article ID e6724, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Silva, J. R. Wood, L. Salvador et al., “Expression profile of male germ cell-associated genes in mouse embryonic stem cell cultures treated with all-trans retinoic acid and testosterone,” Molecular Reproduction and Development, vol. 76, no. 1, pp. 11–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Kang, J. Wang, Y. Zhang, Z. Kou, and S. Gao, “iPS cells can support full-term development of tetraploid blastocyst-complemented embryos,” Cell Stem Cell, vol. 5, no. 2, pp. 135–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Okita, T. Ichisaka, and S. Yamanaka, “Generation of germline-competent induced pluripotent stem cells,” Nature, vol. 448, no. 7151, pp. 313–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Miura, Y. Okada, T. Aoi et al., “Variation in the safety of induced pluripotent stem cell lines,” Nature Biotechnology, vol. 27, no. 8, pp. 743–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Aoi, K. Yae, M. Nakagawa et al., “Generation of pluripotent stem cells from adult mouse liver and stomach cells,” Science, vol. 321, no. 5889, pp. 699–702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Kerkis, S. A. S. Fonseca, R. C. Serafim et al., “In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes,” Cloning and Stem Cells, vol. 9, no. 4, pp. 535–548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Lin, M. E. Gill, J. Koubova, and D. C. Page, “Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos,” Science, vol. 322, no. 5908, pp. 1685–1687, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Toyooka, N. Tsunekawa, R. Akasu, and T. Noce, “Embryonic stem cells can form germ cells in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11457–11462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Tokuda, Y. Kadokawa, H. Kurahashi, and T. Marunouchi, “CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes,” Biology of Reproduction, vol. 76, no. 1, pp. 130–141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Saiti and O. Lacham-Kaplan, “Mouse germ cell development in-vivo and in-vitro,” Biomark Insights, vol. 2, pp. 241–252, 2007. View at Google Scholar
  33. C. Eguizabal, N. Montserrat, R. Vassena et al., “Complete meiosis from human induced pluripotent stem cells,” Stem Cells, vol. 29, no. 8, pp. 1186–1195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Panula, J. V. Medrano, K. Kee et al., “Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells,” Human Molecular Genetics, vol. 20, no. 4, pp. 752–762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Qin, X. Guo, G. H. Cui et al., “Cluster characterization of mouse embryonic stem cell-derived pluripotent embryoid bodies in four distinct developmental stages,” Biologicals, vol. 37, no. 4, pp. 235–244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. A. J. Childs, P. T. K. Saunders, and R. A. Anderson, “Modelling germ cell development in vitro,” Molecular Human Reproduction, vol. 14, no. 9, pp. 501–511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Chambon, “A decade of molecular biology of retinoic acid receptors,” The FASEB Journal, vol. 10, no. 9, pp. 940–954, 1996. View at Google Scholar · View at Scopus
  38. M. Mark, N. B. Ghyselinck, and P. Chambon, “Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis,” Annual Review of Pharmacology and Toxicology, vol. 46, pp. 451–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Bowles, D. Knight, C. Smith et al., “Retinoid signaling determines germ cell fate in mice,” Science, vol. 312, no. 5773, pp. 596–600, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Koubova, D. B. Menke, Q. Zhou, B. Cape, M. D. Griswold, and D. C. Page, “Retinoic acid regulates sex-specific timing of meiotic initiation in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2474–2479, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. D. Griswold, “The central role of Sertoli cells in spermatogenesis,” Seminars in Cell and Developmental Biology, vol. 9, no. 4, pp. 411–416, 1998. View at Google Scholar · View at Scopus