Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 128046, 9 pages
http://dx.doi.org/10.1155/2014/128046
Research Article

Endothelial Function in a Mouse Model of Myeloperoxidase Deficiency

1Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, P.O. Box 432, 405 30 Gothenburg, Sweden
2Department of Molecular Pharmacology, AstraZeneca R&D, Pepparedsleden 1, 431 83 Mölndal, Sweden

Received 30 September 2013; Revised 7 December 2013; Accepted 31 December 2013; Published 23 February 2014

Academic Editor: Vladimir V. Matchkov

Copyright © 2014 Veronika Golubinskaya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Wennmalm, “Endothelial nitric oxide and cardiovascular disease,” Journal of Internal Medicine, vol. 235, no. 4, pp. 317–327, 1994. View at Google Scholar · View at Scopus
  2. M. Félétou and P. M. Vanhoutte, “Endothelial dysfunction: a multifaceted disorder,” The American Journal of Physiology, vol. 291, no. 3, pp. H985–H1002, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. J. Anderson, M. D. Gerhard, I. T. Meredith et al., “Systemic nature of endothelial dysfunction in atherosclerosis,” The American Journal of Cardiology, vol. 75, no. 6, pp. 71B–74B, 1995. View at Google Scholar · View at Scopus
  4. M.-L. Brennan and S. L. Hazen, “Emerging role of myeloperoxidase and oxidant stress markers in cardiovascular risk assessment,” Current Opinion in Lipidology, vol. 14, no. 4, pp. 353–359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Bergt, S. Pennathur, X. Fu et al., “The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 35, pp. 13032–13037, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Zheng, B. Nukuna, M.-L. Brennan et al., “Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and function impairment in subjects with cardiovascular disease,” Journal of Clinical Investigation, vol. 114, no. 4, pp. 529–541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sirpal, “Myeloperoxidase-mediated lipoprotein carbamylation as a mechanistic pathway for atherosclerotic vascular disease,” Clinical Science, vol. 116, no. 9, pp. 681–695, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Arnhold, “Properties, functions, and secretion of human myeloperoxidase,” Biochemistry, vol. 69, no. 1, pp. 4–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Baldus, J. P. Eiserich, A. Mani et al., “Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration,” Journal of Clinical Investigation, vol. 108, no. 12, pp. 1759–1770, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Baldus, V. Rudolph, M. Roiss et al., “Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase,” Circulation, vol. 113, no. 15, pp. 1871–1878, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Eiserich, S. Baldus, M.-L. Brennan et al., “Myeloperoxidase, a leukocyte-derived vascular NO oxidase,” Science, vol. 296, no. 5577, pp. 2391–2394, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M.-L. Brennan, M. M. Anderson, D. M. Shih et al., “Increased atherosclerosis in myeloperoxidase-deficient mice,” Journal of Clinical Investigation, vol. 107, no. 4, pp. 419–430, 2001. View at Google Scholar · View at Scopus
  13. M. J. Mulvany and W. Halpern, “Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats,” Circulation Research, vol. 41, no. 1, pp. 19–26, 1977. View at Google Scholar · View at Scopus
  14. J. Wikström, Imaging of coronary artery function and morphology in living mice [Doctoral Thesis], 2007.
  15. R. F. Furchgott and P. M. Vanhoutte, “Endothelium-derived relaxing and contracting factors,” The FASEB Journal, vol. 3, no. 9, pp. 2007–2018, 1989. View at Google Scholar · View at Scopus
  16. E. H. C. Tang, D. D. Ku, G. L. Tipoe, M. Feletou, R. Y. K. Man, and P. M. Vanhoutte, “Endothelium-dependent contractions occur in the aorta of wild-type and COX2-/- knockout but not COX1-/- knockout mice,” Journal of Cardiovascular Pharmacology, vol. 46, no. 6, pp. 761–765, 2005. View at Publisher · View at Google Scholar · View at Scopus