Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 140438, 9 pages
http://dx.doi.org/10.1155/2014/140438
Research Article

Removal of Cardiopulmonary Resuscitation Artifacts with an Enhanced Adaptive Filtering Method: An Experimental Trial

1School of Biomedical Engineering, Third Military Medical University and Chongqing University, 30 Gaotanyan Main Street, Chongqing 400038, China
2Emergency Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China
3Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-Sen University, Guangzhou 510120, China

Received 30 November 2013; Revised 25 February 2014; Accepted 26 February 2014; Published 27 March 2014

Academic Editor: Giuseppe Ristagno

Copyright © 2014 Yushun Gong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. D. Valenzuela, D. J. Roe, S. Cretin, D. W. Spaite, and M. P. Larsen, “Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model,” Circulation, vol. 96, no. 10, pp. 3308–3313, 1997. View at Google Scholar · View at Scopus
  2. T. D. Valenzuela, D. J. Roe, G. Nichol, L. L. Clark, D. W. Spaite, and R. G. Hardman, “Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos,” The New England Journal of Medicine, vol. 343, no. 17, pp. 1206–1209, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. A. P. van Alem, B. T. Sanou, and R. W. Koster, “Interruption of cardiopulmonary resuscitation with the use of the automated external defibrillator in out-of-hospital cardiac arrest,” Annals of Emergency Medicine, vol. 42, no. 4, pp. 449–457, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Eftestøl, K. Sunde, and P. A. Steen, “Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest,” Circulation, vol. 105, no. 19, pp. 2270–2273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Yu, M. H. Weil, W. Tang et al., “Adverse outcomes of interrupted precordial compression during automated defibrillation,” Circulation, vol. 106, no. 3, pp. 368–372, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. T. D. Valenzuela, K. B. Kern, L. L. Clark et al., “Interruptions of chest compressions during emergency medical systems resuscitation,” Circulation, vol. 112, no. 9, pp. 1259–1265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. P. Edelson, B. S. Abella, J. Kramer-Johansen et al., “Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest,” Resuscitation, vol. 71, no. 2, pp. 137–145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Gundersen, J. T. Kvaløy, J. Kramer-Johansen, P. A. Steen, and T. Eftestøl, “Development of the probability of return of spontaneous circulation in intervals without chest compressions during out-of-hospital cardiac arrest: an observational study,” BMC Medicine, vol. 7, article 6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Cheskes, R. H. Schmicker, J. Christenson et al., “Perishock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest,” Circulation, vol. 124, no. 1, pp. 58–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Link, D. L. Atkins, R. S. Passman et al., “Part 6: electrical therapies: automated external defibrillators, defibrillation, cardioversion, and pacing: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care,” Circulation, vol. 122, no. 18, pp. S706–S719, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. D. Deakin, J. P. Nolan, K. Sunde, and R. W. Koster, “European resuscitation council guidelines for resuscitation 2010 section 3. Electrical therapies: automated external defibrillators, defibrillation, cardioversion and pacing,” Resuscitation, vol. 81, no. 10, pp. 1293–1304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Granegger, T. Werther, and H. Gilly, “Use of independent component analysis for reducing CPR artefacts in human emergency ECGs,” Resuscitation, vol. 82, no. 1, pp. 79–84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Amann, A. Klotz, T. Niederklapfer et al., “Reduction of CPR artifacts in the ventricular fibrillation ECG by coherent line removal,” BioMedical Engineering Online, vol. 9, article 2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Werther, A. Klotz, G. Kracher et al., “CPR artifact removal in ventricular fibrillation ECG signals using gabor multipliers,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 2, pp. 320–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Rheinberger, T. Steinberger, K. Unterkofler, M. Baubin, A. Klotz, and A. Amann, “Removal of CPR artifacts from the ventricular fibrillation ECG by adaptive regression on lagged reference signals,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp. 130–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Langhelle, T. Eftestol, H. Myklebust, M. Eriksen, B. T. Holten, and P. A. Steen, “Reducing CPR artefacts in ventricular fibrillation in vitro,” Resuscitation, vol. 48, no. 3, pp. 279–291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. U. Irusta, J. Ruiz, S. R. de Gauna, T. Eftestøl, and J. Kramer-Johansen, “A least mean-Square filter for the estimation of the cardiopulmonary resuscitation artifact based on the frequency of the compressions,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 4, pp. 1052–1062, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Aramendi, U. Ayala, U. Irusta, E. Alonso, T. Eftestøl, and J. Kramer-Johansen, “Suppression of the cardiopulmonary resuscitation artefacts using the instantaneous chest compression rate extracted from the thoracic impedance,” Resuscitation, vol. 83, no. 6, pp. 692–698, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. O. Aase, T. Eftestol, J. H. Husoy, K. Sunde, and P. A. Steen, “CPR artifact removal from human ECG using optimal multichannel filtering,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 11, pp. 1440–1449, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Eilevstjønn, T. Eftestøl, S. O. Aase, H. Myklebust, J. H. Husøy, and P. A. Steen, “Feasibility of shock advice analysis during CPR through removal of CPR artefacts from the human ECG,” Resuscitation, vol. 61, no. 2, pp. 131–141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Li, J. Bisera, F. Geheb, W. Tang, and M. H. Weil, “Identifying potentially shockable rhythms without interrupting cardiopulmonary resuscitation,” Critical Care Medicine, vol. 36, no. 1, pp. 198–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. E. Kerber, L. B. Becker, J. D. Bourland et al., “Automatic external defibrillators for public access defibrillation: recommendations for specifying and reporting arrhythmia analysis algorithm performance, incorporating new waveforms, and enhancing safety. A statement for health professionals from the American Heart Association Task Force on automatic external defibrillation subcommittee on AED safety and efficacy,” Circulation, vol. 95, no. 6, pp. 1677–1682, 1997. View at Google Scholar · View at Scopus
  23. Y. Li and W. Tang, “Techniques for artefact filtering from chest compression corrupted ECG signals: good, but not enough,” Resuscitation, vol. 80, no. 11, pp. 1219–1220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Gong, B. Chen, and Y. Li, “A review of the performance of artifact filtering algorithms for cardiopulmonary resuscitation,” Journal of Healthcare Engineering, vol. 4, no. 2, pp. 185–202, 2013. View at Publisher · View at Google Scholar
  25. W. G. Grundler, M. H. Weil, J. M. Miller, and E. C. Rackow, “Observations on colloid osmotic pressure, hematocrit, and plasma osmolality during cardiac arrest,” Critical Care Medicine, vol. 13, no. 11, pp. 895–896, 1985. View at Google Scholar · View at Scopus
  26. H. Li, L. Zhang, Z. Yang et al., “Even four minutes of poor quality of CPR compromises outcome in a porcine model of prolonged cardiac arrest,” BioMed Research International, vol. 2013, Article ID 171862, 6 pages, 2013. View at Publisher · View at Google Scholar
  27. S. R. de Gauna, J. Ruiz, U. Irusta, and U. Ayala, “Filtering the cardiopulmonary resuscitation artifact: influence of the signal-to-noise-ratio on the accuracy of the shock advice algorithm,” in Proceedings of the Computing in Cardiology (CinC '10), vol. 37, pp. 681–684, September 2010. View at Scopus
  28. H.-U. Strohmenger, K. H. Lindner, A. Keller, I. M. Lindner, and E. G. Pfenninger, “Spectral analysis of ventricular fibrillation and closed-chest cardiopulmonary resuscitation,” Resuscitation, vol. 33, no. 2, pp. 155–161, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Amann, R. Tratnig, and K. Unterkofler, “A new ventricular fibrillation detection algorithm for automated external defibrillators,” in Proceedings of the Computers in Cardiology, pp. 559–562, Lyon, France, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Amann, R. Tratnig, and K. Unterkofler, “Detecting ventricular fibrillation by time-delay methods,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 1, pp. 174–177, 2007. View at Publisher · View at Google Scholar
  31. E. Fitzgibbon, R. Berger, J. Tsitlik, and H. R. Halperin, “Determination of the noise source in the electrocardiogram during cardiopulmonary resuscitation,” Critical Care Medicine, vol. 30, supplement 4, pp. S148–S153, 2002. View at Google Scholar · View at Scopus
  32. A. H. Travers, T. D. Rea, B. J. Bobrow et al., “Part 4: CPR overview: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care,” Circulation, vol. 122, no. 18, pp. S676–S684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. H. Husøy, J. Eilevstjønn, T. Eftestøl, S. O. Aase, H. Myklebust, and P. A. Steen, “Removal of cardiopulmonary resuscitation artifacts from human ECG using an efficient matching pursuit-like algorithm,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 11, pp. 1287–1298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Werther, A. Klotz, M. Granegger et al., “Strong corruption of electrocardiograms caused by cardiopulmonary resuscitation reduces efficiency of two-channel methods for removing motion artefacts in non-shockable rhythms,” Resuscitation, vol. 80, no. 11, pp. 1301–1307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Ruiz de Gauna, J. Ruiz, U. Irusta, E. Aramendi, T. Eftestøl, and J. Kramer-Johansen, “A method to remove CPR artefacts from human ECG using only the recorded ECG,” Resuscitation, vol. 76, no. 2, pp. 271–278, 2008. View at Publisher · View at Google Scholar · View at Scopus