Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 142658, 11 pages
http://dx.doi.org/10.1155/2014/142658
Review Article

New Imaging Strategies Using a Motion-Resistant Liver Sequence in Uncooperative Patients

Department of Radiology, Jeju National University Hospital, Jeju National University School of Medicine, 1753-3 Ara-1-dong, Jeju-si, Jeju-do 690-716, Republic of Korea

Received 30 June 2014; Accepted 17 August 2014; Published 27 August 2014

Academic Editor: Pascal Niggemann

Copyright © 2014 Bong Soo Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. S. Kim, W. Angthong, Y. H. Jeon, and R. C. Semelka, “Body MR imaging: fast, efficient, and comprehensive,” Radiologic Clinics of North America, vol. 52, no. 4, pp. 623–636, 2014. View at Publisher · View at Google Scholar
  2. C. Malamateniou, S. J. Malik, S. J. Counsell et al., “Motion-compensation techniques in neonatal and fetal MR imaging,” American Journal of Neuroradiology, vol. 34, no. 6, pp. 1124–1136, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. O. W. Hamer, D. A. Aguirre, G. Casola, J. E. Lavine, M. Woenckhaus, and C. B. Sirlin, “Fatty liver: imaging patterns and pitfalls,” Radiographics, vol. 26, no. 6, pp. 1637–1653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. M. Merkle and R. C. Nelson, “Dual gradient-echo in-phase and opposed-phase hepatic MR imaging: a useful tool for evaluating more than fatty infiltration or fatty sparing,” Radiographics, vol. 26, no. 5, pp. 1409–1418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Ferreira, M. Ramalho, R. O. P. de Campos et al., “Comparison of T1-weighted in- and out-of-phase single shot magnetization-prepared gradient-recalled-echo with three-dimensional gradient-recalled-echo at 3.0 tesla: preliminary observations in abdominal studies,” Journal of Magnetic Resonance Imaging, vol. 35, no. 5, pp. 1187–1195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Herédia, M. Ramalho, R. O. P. de Campos et al., “Comparison of a single shot T1-weighted in- and out-of-phase magnetization prepared gradient recalled echo with a standard two-dimensional gradient recalled echo: preliminary findings,” Journal of Magnetic Resonance Imaging, vol. 33, no. 6, pp. 1482–1490, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Ramalho, V. Herédia, R. O. P. De Campos, B. M. Dale, R. M. Azevedo, and R. C. Semelka, “In-phase and out-of-phase gradient-echo imaging in abdominal studies: intra-individual comparison of three different techniques,” Acta Radiologica, vol. 53, no. 4, pp. 441–449, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. R. C. Semelka, D. R. Martin, and N. C. Balci, “Magnetic resonance imaging of the liver: how I do it,” Journal of Gastroenterology and Hepatology, vol. 21, no. 4, pp. 632–637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Jiang, H. Xue, A. Glover, M. Rutherford, D. Rueckert, and J. V. Hajnal, “MRI of moving subjects using multislice Snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies,” IEEE Transactions on Medical Imaging, vol. 26, no. 7, pp. 967–980, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. G. Pipe, “Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging,,” Magnetic Resonance in Medicine, vol. 42, no. 5, pp. 963–969, 1999. View at Publisher · View at Google Scholar
  11. R. C. Semelka and T. K. G. Helmberger, “Contrast agents for mr imaging of the liver,” Radiology, vol. 218, no. 1, pp. 27–38, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. R. M. Azevedo, R. O. P. de Campos, M. Ramalho, V. Herédia, B. M. Dale, and R. C. Semelka, “Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations,” American Journal of Roentgenology, vol. 197, no. 3, pp. 650–657, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Bamrungchart, E. M. Tantaway, E. C. Midia et al., “Free breathing three-dimensional gradient echo-sequence with radial data sampling (radial 3D-GRE) examination of the pancreas: comparison with standard 3D-GRE volumetric interpolated breathhold examination (VIBE),” Journal of Magnetic Resonance Imaging, vol. 38, no. 6, pp. 1572–1577, 2013. View at Publisher · View at Google Scholar
  14. H. Chandarana, T. K. Block, A. B. Rosenkrantz et al., “Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration,” Investigative Radiology, vol. 46, no. 10, pp. 648–653, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. K. W. Kim, J. M. Lee, Y. S. Jeon et al., “Free-breathing dynamic contrast-enhanced MRI of the abdomen and chest using a radial gradient echo sequence with K-space weighted image contrast (KWIC),” European Radiology, vol. 23, no. 5, pp. 1352–1360, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Rasche, R. W. de Boer, D. Holz, and R. Proksa, “Continuous radial data acquisition for dynamic MRI,” Magnetic Resonance in Medicine, vol. 34, no. 5, pp. 754–761, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. K. S. Hee and L. Dougherty, “Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution,” Magnetic Resonance in Medicine, vol. 52, no. 4, pp. 815–824, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Spuentrup, M. Katoh, A. Buecker et al., “Free-breathing 3D steady-state free precession coronary MR angiography with radial k-space sampling: comparison with cartesian k-space sampling and cartesian gradient-echo coronary MR angiography—pilot study,” Radiology, vol. 231, no. 2, pp. 581–586, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Chandarana, L. Feng, T. K. Block et al., “Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling,” Investigative Radiology, vol. 48, no. 1, pp. 10–16, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. J. H. Kim, J. M. Lee, J. H. Park et al., “Solid pancreatic lesions: characterization by using timing bolus dynamic contrast-enhanced MR imaging assessment—a preliminary study,” Radiology, vol. 266, no. 1, pp. 185–196, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Fujinaga, A. Ohya, H. Tokoro et al., “Radial volumetric imaging breath-hold examination (VIBE) with k-space weighted image contrast (KWIC) for dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced MRI of the liver: advantages over Cartesian VIBE in the arterial phase,” European Radiology, vol. 24, no. 6, pp. 1290–1299, 2014. View at Google Scholar
  22. K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: sensitivity encoding for fast MRI,” Magnetic Resonance in Medicine, vol. 42, no. 5, pp. 952–962, 1999. View at Google Scholar
  23. M. H. Yu, J. M. Lee, J. H. Yoon, B. Kiefer, J. K. Han, and B. I. Choi, “Clinical application of controlled aliasing in parallel imaging results in a higher acceleration (CAIPIRINHA)-volumetric interpolated breathhold (VIBE) sequence for gadoxetic acid-enhanced liver MR imaging,” Journal of Magnetic Resonance Imaging, vol. 38, no. 5, pp. 1020–1026, 2013. View at Publisher · View at Google Scholar
  24. K. L. Wright, M. W. Harrell, J. A. Jesberger et al., “Clinical evaluation of CAIPIRINHA: comparison against a GRAPPA standard,” Journal of Magnetic Resonance Imaging, vol. 39, no. 1, pp. 189–194, 2014. View at Publisher · View at Google Scholar
  25. Y. S. Park, C. H. Lee, I. S. Kim et al., “Usefulness of controlled aliasing in parallel imaging results in higher acceleration in gadoxetic acid-enhanced liver magnetic resonance imaging to clarify the hepatic arterial phase,” Investigative Radiology, vol. 49, no. 3, pp. 183–188, 2014. View at Google Scholar
  26. M. S. Davenport, B. L. Viglianti, M. M. Al-Hawary et al., “Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality,” Radiology, vol. 266, no. 2, pp. 452–461, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Mohajer, A. Frydrychowicz, J. B. Robbins, A. G. Loeffler, T. D. Reed, and S. B. Reeder, “Characterization of hepatic adenoma and focal nodular hyperplasia with gadoxetic acid,” Journal of Magnetic Resonance Imaging, vol. 36, no. 3, pp. 686–696, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. U. Motosugi, T. Ichikawa, H. Morisaka et al., “Detection of pancreatic carcinoma and liver metastases with gadoxetic acid-enhanced MR imaging: comparison with contrast-enhanced multi-detector row CT,” Radiology, vol. 260, no. 2, pp. 446–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. Pietryga, L. M. Burke, D. Marin, T. A. Jaffe, and M. R. Bashir, “Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition,” Radiology, vol. 271, no. 2, pp. 426–434, 2014. View at Publisher · View at Google Scholar
  30. M. D. Agrawal, P. Spincemaille, K. W. Mennitt et al., “Improved hepatic arterial phase MRI with 3-second temporal resolution,” Journal of Magnetic Resonance Imaging, vol. 37, no. 5, pp. 1129–1136, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. H. J. Michaely, J. N. Morelli, J. Budjan et al., “CAIPIRINHA-Dixon-TWIST (CDT)-Volume-interpolated breath-hold examination (VIBE): a new technique for fast time-resolved dynamic 3-dimensional imaging of the abdomen with high spatial resolution,” Investigative Radiology, vol. 48, no. 8, pp. 590–597, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Mori, H. Yoshioka, N. Takahashi et al., “Triple arterial phase dynamic MRI with sensitivity encoding for hypervascular hepatocellular carcinoma: comparison of the diagnostic accuracy among the early, middle, late, and whole triple arterial phase imaging,” The American Journal of Roentgenology, vol. 184, no. 1, pp. 63–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. H.-S. Hong, H. S. Kim, M.-J. Kim, J. de Becker, D. G. Mitchell, and M. Kanematsu, “Single breath-hold multiarterial dynamic MRI of the liver at 3T using a 3D fat-suppressed keyhole technique,” Journal of Magnetic Resonance Imaging, vol. 28, no. 2, pp. 396–402, 2008. View at Publisher · View at Google Scholar · View at Scopus