BioMed Research International

BioMed Research International / 2014 / Article
Special Issue

Cardiac Proteomics

View this Special Issue

Research Article | Open Access

Volume 2014 |Article ID 151726 | 9 pages | https://doi.org/10.1155/2014/151726

Comparison of the Ventricle Muscle Proteome between Patients with Rheumatic Heart Disease and Controls with Mitral Valve Prolapse: HSP 60 May Be a Specific Protein in RHD

Academic Editor: Anthony Gramolin
Received02 Dec 2013
Revised31 Jan 2014
Accepted03 Feb 2014
Published12 Mar 2014

Abstract

Objective. Rheumatic heart disease (RHD) is a serious autoimmune heart disease. The present study was aimed at identifying the differentially expressed proteins between patients with RHD and controls with mitral valve prolapse. Methods. Nine patients with RHD and nine controls with mitral valve prolapsed were enrolled for this study. Two-dimensional difference in-gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were performed. Results. A total of 39 protein spots with differential expressions were identified between the two groups (, Average Ratio > 1.2 or Average Ratio < −1.2) and four upregulated proteins (including heat shock protein 60 (HSP 60), desmin, PDZ and LIM domain protein 1, and proteasome subunit alpha type-1) and three downregulated proteins (including tropomyosin alpha-1 chain, malate dehydrogenase, and chaperone activity of bc1 complex homolog) were determined. Conclusion. These seven proteins, especially HSP 60, may serve as potential biomarkers for the diagnosis of RHD and provide evidence to explain the mechanisms of this complex disease in the future.

1. Introduction

Autoimmunity is the failure of an organism to recognize its own constituent parts as self, thus leading to an immune response against its own cells and tissues. Rheumatic heart disease (RHD) is primarily autoimmune sequelae of acute rheumatic fever (ARF) [1, 2], which occurs after group A beta-hemolytic streptococcal pharyngeal infection [3]. RHD can cause chronic inflammation of the endocardium and myocardium, leading to valvular dysfunction and hemodynamic changes and ultimately resulting in heart failure or stroke and other serious consequences. Due to the lack of a specific means of detection of RHD, many patients have been diagnosed with irreversible valvular dysfunction and scheduled for valvular surgery. RHD continues to be a burden in several developing countries such as India and China, although in the western countries it is reasonably rare probably due to the widespread use of antibiotics [1, 4, 5]. Therefore, an ideal biomarker that can represent the characteristic pathophysiological process of RHD will be valuable for the early diagnosis of this disease, which will help patients avoid surgery by early and effective drug therapy.

Proteomics is the largescale study of proteins, particularly their structures and functions, which enables detection and identification of low-abundance proteins. Proteomics has been extensively used to screen diagnostic biomarkers of diseases such as breast cancer and coliform mastitis [6, 7]. Only one proteomics study of the valvular tissue with RHD was performed [8]. However, no study of myocardium with RHD has been performed earlier.

In this study, two-dimensional differential in-gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were used to identify the differentially expressed proteins of myocardium in the RHD and the mitral valve prolapse groups. The present study was aimed at identifying the biomarkers, detecting the chronic inflammatory myocardium injury after ARF, and exploring their significance and mechanism in the pathophysiological process of the myocardial lesion in RHD.

2. Materials and Methods

2.1. Sample Collection

The inclusion criteria for the experimental group are as follows: (i) every patient diagnosed as rheumatic mitral valve insufficiency with or without mitral stenosis and scheduled for mitral valve replacement; (ii) normal preoperative erythrocyte sedimentation rate and antistreptolysin O to eliminate rheumatism in active stage; (iii) all patients in New York Heart Association (NYHA) functional class II-III; and (iv) no other complications; the patients with acute heart failure were excluded. The inclusion criteria of the control group are as follows: (i) every patient diagnosed as mitral valve prolapse because of mitral chordae tendineae fracture and mitral insufficiency and scheduled for mitral valve replacement. The other conditions are the same as criteria (iii)–(v) of the experimental group. RHD cases and their controls were well matched based on the following details: (i) same gender, (ii) difference of age < 5 years old, (iii) difference of left ventricular ejection fraction (EF) < 5%, (iv) difference of left ventricular end-diastolic diameter (LVEDD) < 10% of the larger of the two; and (v) other physiological indexes from physical check in close. Left ventricular papillary muscle was transferred from resected mitral valve to physiological saline and liquid nitrogen and then moved to −80°C refrigerator for storage. Three male and six female pairs totally matched according to the matching principle. The characteristics of pairing groups were presented in Table 1. The study protocol was approved by the Ethics Committee of Ningbo Lihuili Hospital, and informed consent was obtained from all the subjects.


Group numberSamplesGenderAgeEFLVEDD (mm)Mitral valve stenosis

1Experimental group Male510.648Yes
Control groupMale510.5654No
2Experimental group Female490.6145Yes
Control groupFemale460.5950No
3Experimental group Female330.6855Yes
Control groupFemale380.6560No
4Experimental group Male540.5360No
Control groupMale570.5562No
5Experimental group Male250.6649Yes
Control groupMale300.6647No
6Experimental group Female210.6643Yes
Control groupFemale180.6348No
7Experimental group Female550.5663Yes
Control groupFemale570.5360No
8Experimental group Female420.5165Yes
Control groupFemale470.567No
9Experimental group Female430.4955Yes
Control groupFemale470.5160No 

2.2. Sample Preparation for 2D-DIGE

DIGE lysis buffer was added and ground upon ice. The samples were centrifuged and the supernatant was collected to detect the protein concentration. The samples were diluted to 5 μg/μL and the 18 samples were mixed with equal quantity, like 50 μg mixture contains 2.78 μg per sample. The mixture was subpackaged for 50 μg per 10 μL as the internal standard. The pH of the sample was adjusted to 8.0-9.0 for further dye marking. Fifty μg of each sample was labeled with fluorescent dye (GE Healthcare) (the internal standard was labeled Cy2, the experimental group sample was labeled Cy3, and the control group sample was labeled Cy5). The proteins were placed on ice in the dark for 30 minutes for labeling, and finally lysine was added to terminate the reaction.

2.3. 2D-DIGE

The marked samples were combined and sample buffer was added on the ice for 10 minutes. The hydration buffer was added into the labeled samples to a total volume of 250 μL for hydrating the immobilized pH gradient (IPG) strips (pH 3–10 NL, GE Healthcare), followed by isoelectric focusing (IEF). After IEF, place the IPG strips in the equilibration buffer A and equilibration buffer B, in turn, to reduce the disulfide bonds. For the second dimension, the IPG strips were placed on 12.5% polyacrylamide gels for sodium dodecyl sulfate polyacrylamide gel electrophoresis.

2.4. Images Scanning and Analysis

The individual images of Cy2-, Cy3-, and Cy5-labeled proteins of each gel were obtained using Typhoon FLA9000 imager (GE Healthcare) with the wavelengths of 488 nm (Cy2), 532 nm (Cy3), and 633 nm (Cy5), respectively. The analysis of images was performed through DeCyder 6.5 software (GE Healthcare) to identify the different expression levels of proteins displayed. -test value and Average Ratio (control group/experimental group) were used to select differentially expressed protein spots. Protein expression value with an Average Ratio > 1.2 or Average Ratio < −1.2 and was considered to be statistically significant.

2.5. Protein Identification

All the protein spots of interest were selected and excised manually. Sequencing-grade trypsin (Promega, USA) was added for digestion overnight at 37°C and the enzymatic hydrolysate was collected. ZipTip (Millipore, USA) desalination was performed.

The samples were mixed with alpha-cyano-4-hydroxycinnamic acid (HCCA) matrix as a 1 : 1 relationship. The MS and MS/MS data for protein identification were obtained through 4800 Plus MALDI TOF/TOFTM Analyzer (Applied Biosystems). Combined peptide mass fingerprinting and MS/MS queries were performed using the MASCOT search engine 2.2 (Matrix Science, Ltd) embedded into GPS-Explorer Software 3.6 (Applied Biosystems) on the National Center for Biotechnology Information database.

3. Results

2D-DIGE was performed for the nine pairs and 27 maps of 2D gel were obtained (nine maps each for internal standard, experimental group, and control group, resp.). The DIGE images of the left ventricular papillary muscle protein were presented in Figure 1. The distribution and relative intensity of protein spots between groups were consistent. The protein spots in images of RHD mitral valve lesions were compared with those of mitral valve prolapse and 39 differentially expressed proteins were identified as the criterion that -test value < 0.05, Average Ratio > 1.2, or Average Ratio < −1.2. The spots with differential expressions were numbered in Figure 2 and their information was presented in Table 2. Of these, 18 spots were overexpressed more in the RHD group than in the control group (Average Ratio < −1.2) and the remaining 21 spots were expressed stronger in the control group (Average Ratio > 1.2).


NumberSpot code -test valueAverage ratio

1340.0111.46
2360.0471.77
3470.0111.58
4570.0191.52
5660.0321.36
6680.0461.52
71090.0121.95
81270.0261.59
91370.0351.67
105320.022−3.66
117160.042−3.17
127510.00079−1.92
137680.033−1.62
147720.021−1.28
158470.048−1.53
168960.035−1.94
179560.00631.4
189740.00543.37
199910.043−1.4
2010170.0481.23
2110430.001−1.39
2210570.045−1.38
2311640.034−1.53
2411980.0131.24
2512090.00441.34
2612120.0111.24
2712340.0321.61
2812710.01−1.77
2913690.017−1.71
3013890.0161.36
3113980.0231.21
3214100.025−1.52
3315050.048−1.2
3415380.042−1.33
3517130.018−1.39
3617540.00451.59
3717670.0251.31
3817690.048−1.59
3920300.00891.57

MALDI-TOF-MS instruments are ideal for protein identification and also for enabling the identification of several proteins in one spot if they are not separated in the electrophoretic procedure. After the incision and enzymolysis of the 28 special spots (failed to identify the other 11 spots) (Table 3), the MALDI-TOF-MS was used to analyze the differential proteins. Finally, 16 spots were successfully identified. The criterion of successful identification was the protein score CI > 95%, while the protein score was > 50. The results were shown in Table 4. There were 10 proteins overexpressed in the experimental group and six proteins overexpressed in the control group. The heat shock protein 60 (HSP 60) (Average Ratio = −3.17) level was more than three times upregulated in the experimental group. With the alpha-actin presenting an equivocal result, more than one alpha-actin was upregulated or downregulated in the experimental group (Average Ratio = −1.92, 3.37, 1.23, −1.39, and 1.4).


NumberSpot codeTarget number -test valueAverage ratioProtein name

1532I20.022−3.66Failed
2751I30.00079−1.92Alpha-actin
3716I40.042−3.17Heat shock protein 60
4768I50.033−1.62Desmin
5772I60.021−1.28Failed
6847I70.048−1.53Failed
7896I80.035−1.94Failed
8974I90.00543.37Alpha-actin
91017I100.0481.23Alpha-actin
101043I110.001−1.39Alpha-actin
111057I120.045−1.38Failed
12991I130.043−1.4Elongation factor Tu
13956I140.00631.4Alpha-actin
141212I150.0111.24Failed
151209I160.00441.34Tropomyosin alpha-1 chain
161164I170.034−1.53PDZ and LIM domain protein 1
171234I180.0321.61Malate dehydrogenase
181271I190.01−1.77Failed
191369I200.017−1.71Proteasome subunit alpha type 1
201389I210.0161.36Failed
211398I220.0231.21Failed
221410I230.025−1.52Failed
231505I240.048−1.2Peroxiredoxin 6
241538J10.042−1.33Cysteine and glycine-rich protein 3
251754J20.00451.59CABC1 protein
261767J30.0251.31Failed
271713J40.018−1.39Collagen type I alpha 1
281769J50.048−1.59Failed


NumberSpot codeProtein nameAccession number -test valueAverage ratioPIMWPeptide countProtein ScoreC.I.%Overexpressed in

1751Alpha-actingi∣1780270.00079−1.925.23424805111100E
2716Heat shock protein 60gi∣777020860.042−3.175.761345.59303100E
3768Desmingi∣557499320.033−1.625.2153560.231916100E
4974Alpha-actingi∣48850490.00543.375.23423349207100C
51017Alpha-actingi∣45018830.0481.235.234238115579100C
61043Alpha-actingi∣1780670.001−1.395.1937125.38130100E
7991Elongation factor Tugi∣7044160.043−1.47.749851.316353100E
8956Alpha-actingi∣1780270.00631.45.234248015579100C
91209Tropomyosin alpha-1 chaingi∣632528980.00441.344.6932745.722571100C
101164PDZ and LIM domain protein 1gi∣139941510.034−1.536.5636505.211315100E
111234Malate dehydrogenasegi∣1196203680.0321.617.6231920.57159100C
121369Proteasome subunit alpha type-1gi∣135435510.017−1.716.15298646232100E
131505peroxiredoxin 6gi∣47586380.048−1.2625133.212427100E
141538cysteine and glycine-rich protein 3gi∣45028930.042−1.338.8921867.39387100E
151754CABC1 proteingi∣1205384990.00451.598.7344563.73117100C
161713collagen type I alpha 1gi∣1196150360.018−1.395.9385144.598799.947E

E: Experimental Group; C: Control Group.

4. Discussion

Patients with RHD who were scheduled to undergo mitral valve replacement were selected as the experimental group, and patients with mitral valve prolapse were selected as the control group. The two groups were matched in gender, age, EF, and LVEDD to get an exact contrast. Similar EF and LVEDD can eliminate the difference caused by other associated factors such as heart failure. Those proteins whose Average Ratio > 1.5 or < −1.5 were considered to be statistically significant in the difference of protein expression. As a result, 11 differentially expressed proteins were identified. There are seven structure proteins (four types of alpha-actin, desmin, tropomyosin alpha-1 chain, and PDZ and LIM domain protein 1), two zymoproteins (malate dehydrogenase (MDH) and proteasome subunit alpha type-1), and two molecular chaperones (HSP 60 and chaperone activity of bc1 complex homolog (CABC1) protein). The actins were identified in more than one spot due to the great richness of actins in the cardiac muscle. There were four proteins overexpressed in the experimental group (HSP 60, desmin, PDZ and LIM domain protein 1, and proteasome subunit alpha type-1) and three proteins overexpressed in the control group (tropomyosin alpha-1 chain, MDH, and CABC1 protein).

Heat shock proteins (HSPs) are a family of highly conserved, protective proteins expressed in all cells. They primarily protect cells by folding denatured proteins, stabilizing macromolecules, and targeting irreversibly denatured proteins for clearance [9]. However, some findings implied that the released HSP 60 can have a toxic effect on the surrounding cardiac myocytes and lead to apoptosis when myocardium is injured [10, 11]. Extracellular HSP may participate in the inflammatory and autoimmune disorders by activating the innate immune response [12, 13]. As a ligand of toll-like receptor- (TLR-) 4, extracellular HSP 60 can activate TLR-4, which could cause cardiac myocyte apoptosis and inflammatory cytokine production [10, 11, 14]. Intracellular HSP 60 was released into the media, which also caused cytokine production and TLR-4 overexpression [14]. Although the resected papillary muscle was removed from the serum and pericardium and treated with physiological saline, it was quite difficult to confirm whether the HSP 60 changes detected were extracellular or intracellular considering the innate nature of RHD. It was found that HSP 60 was significantly increased in patients with RHD (3.17 times higher than the control group). However, the overexpression of HSP 60 can activate TLR-4 and potentially stimulate the immune diseases. Although other studies have suggested that HSP 60 levels were increased in the failing heart [15, 16] and the ischemia-reperfusion cardiac muscle [17], the influence of congestive heart failure and ischemia-reperfusion injury has been eliminated in the design of the present study. The unique research about acute RHD and HSP family protein suggested that the HSP 60, HSP 73, and HSP 78 were associated with RHD and the autoimmunity process [18]. It is worthy to observe that in the research the sera from patients with acute RHD were collected as the study sample, while the left ventricular papillary muscle was collected from patients with chronic RHD. The present research indicates the role that HSP 60 plays in myocardial impaired process in RHD more intuitively than sera. Lin and colleagues identified HSP 60 on the surface of cardiac myocytes from failing hearts and suggested that the increased HSP 60 may be deleterious [15]. Other researchers suggested that the increase of HSP 60 may be driven by transcription factor nuclear factor-kappaB (NF-κB) activation [19, 20]. The activated NF-κB can contribute to the immune reaction [21], while the proteasome inhibitor can inhibit the activity of NF-κB [21, 22]. Proteasome participated in the synthesis of active NF-κB. The increased HSP expression can label the misfolding and unfolding proteins for degradation by proteasome [19]. In the present research, the two proteins were both increased in experimental group (3.17 times for HSP 60 and 1.71 times for proteasome subunit alpha type-1). Thus, as the influence of heart failure and ischemia-reperfusion injury has been eliminated, there is a belief that the interaction of HSPs and proteasome may play an important role in apoptosis and inflammation reaction in the myocardium with RHD. This also leads to the inference that the upregulated HSP 60 may be a biomarker for RHD, but certainly further research is required.

Desmin is one of the critical cytoskeleton proteins of cardiomyocytes that will increase due to the myocardial hypertrophy in patients with heart failure [23, 24]. Another two studies pointed out that the myocardial tissue of patients with end-stage heart failure revealed a decrease in or lack of desmin expression [25, 26]. According to Monreal et al. [27], increased desmin expression seems to be a sensitive marker of an early cellular response to mechanical stretch, while the decreased or lack of desmin expression may usually happen in the end stage of some serious cardiac diseases, such as heart failure and idiopathic dilated cardiomyopathy. In the present study, the desmin expression in the experimental group is 1.62 times compared with that in the control group, which we conjectured is because of the longer course of disease and the more significant myocardial hypertrophy in patients with RHD.

PDZ and LIM domains containing proteins play diverse biological roles, such as regulation of actin structure, and have been implicated in cardiac and skeletal muscle structure, function, and disease [2831]. The actinin-associated LIM protein (ALP) subfamily proteins are expressed at the highest levels in skeletal and cardiac muscle [32]. Mouse models and in vitro studies suggested that ALP deficiency may influence the development of the right ventricle and ALP enhances the ability of α-actinin to cross-link actin filaments [3335]. The overexpression of PDZ and LIM domain protein 1 (Average Ratio = −1.53, ) in the present research may play the role of ALP, which interacts with the α-actinin and enhances the function of actin filament.

Actin and tropomyosin are major components of the actin microfilament system [36]. Tropomyosin is widely distributed in all cell types along the length of actin filaments [37, 38] and regulates the rates of cardiac contraction and relaxation with actin and the troponin complex [39]. In the present research, the decreased expression of tropomyosin α-1 chain (also called α-tropomyosin) in the experimental group (Average Ratio = 1.34, ) may influence the relaxation and contraction rate of heart.

MDH catalyzes the conversion of oxaloacetate and malate [40]. The activity of cytoplasmic MDH was decreased with senescence due to shortening of telomere length [41, 42]. It has been reported that cytoplasmic MDH family was significantly decreased in patients with dilated cardiomyopathy by 2D-DIGE [43]. CABC1 is a mitochondrial protein similar to yeast CABC1. The CABC1 gene, also called CoQ8 or ADCK3, is one of the genes involved in the ubiquinone biosynthesis pathway. A group of CABC1 gene mutations (R213W, G272V, G272D, and E551K) were identified in ubiquinone-deficient patients with familiar neurologic disease, which caused respiratory-chain impairment and ubiquinone deficiency in muscle tissue [44, 45]. Inhibiting the CABC1 gene expression partially suppresses p53-induced apoptosis [46]. The association between CABC1 and cardiac diseases was not found. In the present research, the MDH and CABC1 proteins decreased in the RHD group (Average Ratio = 1.61, , Average Ratio = 1.59, , resp.). The development of disease may influence the metabolism and cellular processes [47].

The 2D-DIGE experiment is based on fluorescence-based quantitation and the low-sensitivity poststaining may influence the detection. Therefore, numerous low-abundance but differentially expressed dye-labeled proteins may be failed to be imaged. A total of 39 differentially expressed proteins were identified by 2D-DIGE. There were 11 differential spots that failed to be identified from gel incision. The reasons may be as follows: (i) a portion of the low-abundance proteins were covered owing to the different sampling amounts; (ii) the different coloration methods for proteins caused the difference; and (iii) the samples degraded. Finally, 16 of the 28 spots were successfully identified for which MALDI-TOF-MS experiment was performed. A further western bolt experiment was impossible to perform at this point in time due to the lack of samples from patients with RHD; however, it is known that a confirmed experiment is necessary.

5. Conclusion

In conclusion, in this study, there are seven special proteins found to be significantly different in abundance between the patients with RHD and controls detected through the 2D-DIGE and MALDI-TOF-MS methods. Four proteins, namely, HSP60, desmin, PDZ and LIM domain protein 1, and proteasome subunit alpha type-1, were increased in the experimental group, whereas the other three proteins, namely, tropomyosin alpha-1 chain, MDH, and CABC1 protein, were decreased in the experimental group. HSP 60 may play an important role in the autoimmune pathological process of RHD and could be regarded as a biomarker for RHD. However, this hypothesis needs further confirmation.

Abbreviations

RHD:Rheumatic heart disease
ARF:Acute rheumatic fever
2D-DIGE:Two-dimensional difference gel electrophoresis
MALDI-TOF-MS:Matrix-assisted laser desorption ionization time-of-flight mass spectrometry
EF:Ejection fraction
LVEDD:Left ventricular end-diastolic diameter
HSP 60:Heat shock protein 60
MDH:Malate dehydrogenase
CABC1:Chaperone activity of bc1 complex homolog.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The research was supported by Grants from The Natural Science Fund of Ningbo to Dawei Zheng (no. 2011A610036), Major priority theme project of Science and Technology Department of Zhejiang Province (no. 2009C03013-3), and Advanced key Scientific and Technological Programs of Ningbo (no. 2012C5017).

References

  1. B. Shah, M. Sharma, R. Kumar, K. N. Brahmadathan, V. J. Abraham, and R. Tandon, “Rheumatic heart disease: progress and challenges in India,” The Indian Journal of Pediatrics, vol. 80, 1, supplement, pp. S77–S86, 2013. View at: Publisher Site | Google Scholar
  2. D. Toor and H. Vohra, “Immune responsiveness during disease progression from acute rheumatic fever to chronic rheumatic heart disease,” Microbes Infect, vol. 14, no. 12, pp. 1111–1117, 2012. View at: Publisher Site | Google Scholar
  3. V. Kuma, A. K. Abbas, N. Fausto, and R. Mitchell, Robbins Basic Pathology, 2007.
  4. R. Bhardwaj, A. Kandoria, R. Marwah et al., “Prevalence of rheumatic fever and rheumatic heart disease in rural population of Himachal—a population based study,” Journal of the Association of Physicians of India, vol. 60, pp. 13–14, 2012. View at: Google Scholar
  5. P. Nordet, R. Lopez, A. Dueñas, and L. Sarmiento, “Prevention and control of rheumatic fever and rheumatic heart disease: the Cuban experience (1986–1996–2002),” Cardiovascular Journal of Africa, vol. 19, no. 3, pp. 135–140, 2008. View at: Google Scholar
  6. J. L. Boehmer, J. A. DeGrasse, M. A. McFarland et al., “The proteomic advantage: label-free quantification of proteins expressed in bovine milk during experimentally induced coliform mastitis,” Veterinary Immunology and Immunopathology, vol. 138, no. 4, pp. 252–266, 2010. View at: Publisher Site | Google Scholar
  7. H. Hondermarck, A. S. Vercoutter-Edouart, F. Révillion et al., “Proteomics of breast cancer for marker discovery and signal pathway profiling,” Proteomics, vol. 1, no. 10, pp. 1216–1232, 2001. View at: Google Scholar
  8. K. C. Faé, D. Diefenbach da Silva, A. M. B. Bilate et al., “PDIA3, HSPA5 and vimentin, proteins identified by 2-DE in the valvular tissue, are the target antigens of peripheral and heart infiltrating T cells from chronic rheumatic heart disease patients,” Journal of Autoimmunity, vol. 31, no. 2, pp. 136–141, 2008. View at: Publisher Site | Google Scholar
  9. S. Gupta and A. A. Knowlton, “HSP60, Bax, apoptosis and the heart,” Journal of Cellular and Molecular Medicine, vol. 9, no. 1, pp. 51–58, 2005. View at: Google Scholar
  10. S. C. Kim, J. P. Stice, L. Chen et al., “Extracellular heat shock protein 60, cardiac myocytes, and apoptosis,” Circulation Research, vol. 105, no. 12, pp. 1186–1195, 2009. View at: Publisher Site | Google Scholar
  11. Z. A. Malik, K. S. Kott, A. J. Poe et al., “Cardiac myocyte exosomes: stability, HSP60, and proteomics,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 304, no. 7, pp. H954–H965, 2013. View at: Publisher Site | Google Scholar
  12. W. Chen, U. Syldath, K. Bellmann, V. Burkart, and H. Kolb, “Human 60-kDa heat-shock protein: a danger signal to the innate immune system,” Journal of Immunology, vol. 162, no. 6, pp. 3212–3219, 1999. View at: Google Scholar
  13. A. Kol, A. H. Lichtman, R. W. Finberg, P. Libby, and E. A. Kurt-Jones, “Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells,” Journal of Immunology, vol. 164, no. 1, pp. 13–17, 2000. View at: Google Scholar
  14. J. Tian, X. Guo, X. M. Liu et al., “Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes,” Cardiovascular Research, vol. 98, pp. 391–401, 2013. View at: Publisher Site | Google Scholar
  15. L. Lin, S. C. Kim, Y. Wang et al., “HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 293, no. 4, pp. H2238–H2247, 2007. View at: Publisher Site | Google Scholar
  16. A. A. Knowlton, S. Kapadia, G. Torre-Amione et al., “Differential expression of heat shock proteins in normal and failing human hearts,” Journal of Molecular and Cellular Cardiology, vol. 30, no. 4, pp. 811–818, 1998. View at: Publisher Site | Google Scholar
  17. J. Sakai, H. Ishikawa, H. Satoh, S. Yamamoto, S. Kojima, and M. Kanaoka, “wo-dimensional differential gel electrophoresis of rat heart proteins in ischemia and ischemia-reperfusion,” Methods in Molecular Biology, vol. 357, pp. 33–43, 2007. View at: Publisher Site | Google Scholar
  18. D. Tontsch, S. Pankuweit, and B. Maisch, “Autoantibodies in the sera of patient with rheumatic heart disease: characterization of myocardial antigens by two-dimensional immunoblotting and N-terminal sequence analysis,” Clinical and Experimental Immunology, vol. 121, no. 2, pp. 270–274, 2000. View at: Publisher Site | Google Scholar
  19. Y. Wang, L. Chen, N. Hagiwara, and A. A. Knowlton, “Regulation of heat shock protein 60 and 72 expression in the failing heart,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 2, pp. 360–366, 2010. View at: Publisher Site | Google Scholar
  20. S. Kobba, S. C. Kim, L. Chen et al., “The heat shock paradox and cardiac myocytes: role of heat shock factor,” Shock, vol. 35, no. 5, pp. 478–484, 2011. View at: Publisher Site | Google Scholar
  21. J. Pye, F. Ardeshirpour, A. McCain et al., “Proteasome inhibition ablates activation of NF-κB in myocardial reperfusion and reduces reperfusion injury,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 284, no. 3, pp. H919–H926, 2003. View at: Google Scholar
  22. A. Anbanandam, D. C. Albarado, D. C. Tirziu, M. Simons, and S. Veeraraghavan, “Molecular basis for proline- and arginine-rich peptide inhibition of proteasome,” Journal of Molecular Biology, vol. 384, no. 1, pp. 219–227, 2008. View at: Publisher Site | Google Scholar
  23. P. Vicart, J. M. Dupret, J. Hazan et al., “Human desmin gene: cDNA sequence, regional localization and exclusion of the locus in a familial desmin-related myopathy,” Human Genetics, vol. 98, no. 4, pp. 422–429, 1996. View at: Publisher Site | Google Scholar
  24. P. M. McLendon and J. Robbins, “Desmin-related cardiomyopathy: an unfolding story,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 301, no. 4, pp. H1220–H1228, 2011. View at: Publisher Site | Google Scholar
  25. S. Di Somma, M. P. Di Benedetto, G. Salvatore et al., “Desmin-free cardiomyocytes and myocardial dysfunction in end stage heart failure,” European Journal of Heart Failure, vol. 6, no. 4, pp. 389–398, 2004. View at: Publisher Site | Google Scholar
  26. A. Pawlak, R. J. Gil, T. Kulawik et al., “Type of desmin expression in cardiomyocytes—a good marker of heart failure development in idiopathic dilated cardiomyopathy,” Journal of Internal Medicine, vol. 272, pp. 287–297, 2012. View at: Publisher Site | Google Scholar
  27. G. Monreal, L. M. Nicholson, B. Han et al., “Cytoskeletal remodeling of desmin is a more accurate measure of cardiac dysfunction than fibrosis or myocyte hypertrophy,” Life Sciences, vol. 83, no. 23-24, pp. 786–794, 2008. View at: Publisher Site | Google Scholar
  28. J. L. Kadrmas and M. C. Beckerle, “The LIM domain: from the cytoskeleton to the nucleus,” Nature Reviews Molecular Cell Biology, vol. 5, no. 11, pp. 920–931, 2004. View at: Publisher Site | Google Scholar
  29. K. Jani and F. Schöck, “Zasp is required for the assembly of functional integrin adhesion sites,” Journal of Cell Biology, vol. 179, no. 7, pp. 1583–1597, 2007. View at: Publisher Site | Google Scholar
  30. G. Schaffar, J. Taniguchi, T. Brodbeck et al., “LIM-only protein 4 interacts directly with the repulsive guidance molecule a receptor Neogenin,” Journal of Neurochemistry, vol. 107, no. 2, pp. 418–431, 2008. View at: Publisher Site | Google Scholar
  31. M. Zheng, H. Cheng, I. Banerjee, and J. Chen, “ALP/Enigma PDZ-LIM domain proteins in the heart,” Journal of Molecular Cell Biology, vol. 2, no. 2, pp. 96–102, 2010. View at: Publisher Site | Google Scholar
  32. H. Xia, S. T. Winokur, W. L. Kuo, M. R. Altherr, and D. S. Bredt, “Actinin-associated LIM protein: identification of a domain interaction between PDZ and spectrin-like repeat motifs,” Journal of Cell Biology, vol. 139, no. 2, pp. 507–515, 1997. View at: Publisher Site | Google Scholar
  33. M. Pashmforoush, P. Pomiès, K. L. Peterson et al., “Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy,” Nature Medicine, vol. 7, no. 5, pp. 591–597, 2001. View at: Publisher Site | Google Scholar
  34. I. Lorenzen-Schmidt, A. D. McCulloch, and J. H. Omens, “Deficiency of actinin-associated LIM protein alters regional right ventricular function and hypertrophic remodeling,” Annals of Biomedical Engineering, vol. 33, no. 7, pp. 888–896, 2005. View at: Publisher Site | Google Scholar
  35. K. Jo, B. Rutten, R. C. Bunn, and D. S. Bredt, “Actinin-associated LIM protein-deficient mice maintain normal development and structure of skeletal muscle,” Molecular and Cellular Biology, vol. 21, no. 5, pp. 1682–1687, 2001. View at: Publisher Site | Google Scholar
  36. P. Gunning, R. Weinberger, and P. Jeffrey, “Actin and tropomyosin isoforms in morphogenesis,” Anatomy and Embryology, vol. 195, no. 4, pp. 311–315, 1997. View at: Publisher Site | Google Scholar
  37. S. V. Perry, “Vertebrate tropomyosin: distribution, properties and function,” Journal of Muscle Research and Cell Motility, vol. 22, no. 1, pp. 5–49, 2001. View at: Publisher Site | Google Scholar
  38. C. L. Albert Wang and L. M. Coluccio, “New insights into the regulation of the actin cytoskeleton by tropomyosin,” International Review of Cell and Molecular Biology, vol. 281, pp. 91–128, 2010. View at: Publisher Site | Google Scholar
  39. G. Jagatheesan, S. Rajan, and D. F. Wieczorek, “Investigations into tropomyosin function using mouse models,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 5, pp. 893–898, 2010. View at: Publisher Site | Google Scholar
  40. P. Minarik, N. Tomaskova, M. Kollarova, and M. Antalik, “Malate dehydrogenases—structure and function,” General Physiology and Biophysics, vol. 21, pp. 257–265, 2002. View at: Google Scholar
  41. S. M. Lee, S. H. Dho, S. K. Ju, J. S. Maeng, J. Y. Kim, and K. S. Kwon, “Cytosolic malate dehydrogenase regulates senescence in human fibroblasts,” Biogerontology, vol. 13, no. 5, pp. 525–536, 2012. View at: Publisher Site | Google Scholar
  42. R. Y. L. Zee, A. J. Castonguay, N. S. Barton, S. Germer, and M. Martin, “Mean leukocyte telomere length shortening and type 2 diabetes mellitus: a case-control study,” Translational Research, vol. 155, no. 4, pp. 166–169, 2010. View at: Publisher Site | Google Scholar
  43. M. Knecht, V. Regitz-Zagrosek, K. P. Pleissner et al., “Characterization of myocardial protein composition in dilated cardiomyopathy by two-dimensional gel electrophoresis,” European Heart Journal, vol. 15, pp. 37–44, 1994. View at: Google Scholar
  44. J. Mollet, A. Delahodde, V. Serre et al., “CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures,” American Journal of Human Genetics, vol. 82, no. 3, pp. 623–630, 2008. View at: Publisher Site | Google Scholar
  45. R. Horvath, B. Czermin, S. Gulati et al., “Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 83, no. 2, pp. 174–178, 2012. View at: Publisher Site | Google Scholar
  46. M. Iiizumi, H. Arakawa, T. Mori, A. Ando, and Y. Nakamura, “Isolation of a novel gene, CABC1, encoding a mitochondrial protein that is highly homologous to yeast activity of bc1 complex,” Cancer Research, vol. 62, no. 5, pp. 1246–1250, 2002. View at: Google Scholar
  47. R. A. Musrati, M. Kollárová, N. Mernik, and D. Mikulášová, “Malate dehydrogenase: distribution, function and properties,” General Physiology and Biophysics, vol. 17, no. 3, pp. 193–210, 1998. View at: Google Scholar

Copyright © 2014 Dawei Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1032 Views | 494 Downloads | 3 Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.