Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 192769, 9 pages
http://dx.doi.org/10.1155/2014/192769
Research Article

Impaired Cerebral Mitochondrial Oxidative Phosphorylation Function in a Rat Model of Ventricular Fibrillation and Cardiopulmonary Resuscitation

1Department of Emergency Medicine, The First People’s Hospital of Foshan, 81 Ling Nan Road, Foshan, Guangdong 528000, China
2Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, China
3Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong 510120, China

Received 1 November 2013; Accepted 4 January 2014; Published 18 February 2014

Academic Editor: Giuseppe Ristagno

Copyright © 2014 Jun Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Nolan, R. W. Neumar, C. Adrie et al., “Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia the Council on Cardiopulmonary, Perioperative, and Critical Care the Council on Clinical Cardiology,” Resuscitation, vol. 79, no. 3, pp. 350–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Laver, C. Farrow, D. Turner, and J. Nolan, “Mode of death after admission to an intensive care unit following cardiac arrest,” Intensive Care Medicine, vol. 30, no. 11, pp. 2126–2128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. I. M. Ayoub, J. Radhakrishnan, and R. J. Gazmuri, “Targeting mitochondria for resuscitation from cardiac arrest,” Critical care medicine, vol. 36, no. 11, pp. S440–446, 2008. View at Google Scholar · View at Scopus
  4. R. J. Gazmuri and J. Radhakrishnan, “Protecting mitochondrial bioenergetic function during resuscitation from cardiac arrest,” Critical Care Clinics, vol. 28, no. 2, pp. 245–270, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Fang, Z. Huang, J. Zhu et al., “Ultrastructural evidence of mitochondrial abnormalities in postresuscitation myocardial dysfunction,” Resuscitation, vol. 83, no. 3, pp. 386–394, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Han, T. Da, N. A. Riobo, and L. B. Becker, “Early mitochondrial dysfunction in electron transfer activity and reactive oxygen species generation after cardiac arrest,” Critical care medicine, vol. 36, no. 11, supplement, pp. S447–S453, 2008. View at Google Scholar · View at Scopus
  7. J. Radhakrishnan, S. Wang, I. M. Ayoub, J. D. Kolarova, R. F. Levine, and R. J. Gazmuri, “Circulating levels of cytochrome c after resuscitation from cardiac arrest: a marker of mitochondrial injury and predictor of survival,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 292, no. 2, pp. H767–H775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Tsai, C. H. Huang, S. H. Tsai et al., “The difference in myocardial injuries and mitochondrial damages between asphyxial and ventricular fibrillation cardiac arrests,” The American Journal of Emergency Medicine, vol. 30, no. 8, pp. 1540–1548, 2012. View at Publisher · View at Google Scholar
  9. R. J. Gazmuri, E. Hoffner, J. Kalcheim et al., “Myocardial protection during ventricular fibrillation by reduction of proton-driven sarcolemmal sodium influx,” Journal of Laboratory and Clinical Medicine, vol. 137, no. 1, pp. 43–55, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. R. J. Gazmuri, I. M. Ayoub, E. Hoffner, and J. D. Kolarova, “Successful ventricular defibrillation by the selective sodium-hydrogen exchanger isoform-1 inhibitor cariporide,” Circulation, vol. 104, no. 2, pp. 234–239, 2001. View at Google Scholar · View at Scopus
  11. I. M. Ayoub, J. Kolarova, Z. Yi et al., “Sodium-hydrogen exchange inhibition during ventricular fibrillation: beneficial effects on ischemic contracture, action potential duration, reperfusion arrhythmias, myocardial function, and resuscitability,” Circulation, vol. 107, no. 13, pp. 1804–1809, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Wang, J. Radhakrishnan, I. M. Ayoub, J. D. Kolarova, D. M. Taglieri, and R. J. Gazmuri, “Limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation prevents excess mitochondrial Ca2+ accumulation and attenuates myocardial injury,” Journal of Applied Physiology, vol. 103, no. 1, pp. 55–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Radhakrishnan, M. P. Upadhyaya, M. Ng et al., “Erythropoietin facilitates resuscitation from ventricular fibrillation by signaling protection of mitochondrial bioenergetic function in rats,” The American Journal of Translational Research, vol. 5, no. 3, pp. 316–326, 2013. View at Google Scholar
  14. Š. Grmec, M. Strnad, D. Kupnik, A. Sinkovič, and R. J. Gazmuri, “Erythropoietin facilitates the return of spontaneous circulation and survival in victims of out-of-hospital cardiac arrest,” Resuscitation, vol. 80, no. 6, pp. 631–637, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Singh, J. D. Kolarova, S. Wang, I. M. Ayoub, and R. J. Gazmuri, “Myocardial protection by erythropoietin during resuscitation from ventricular fibrillation,” American Journal of Therapeutics, vol. 14, no. 4, pp. 361–368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Xu, M. A. Puchowicz, X. Sun, and J. C. Lamanna, “Mitochondrial dysfunction in aging rat brain following transient global ischemia,” Advances in Experimental Medicine and Biology, vol. 614, pp. 379–386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Ma, S. L. Mehta, B. Lu, and P. A. Li, “Deficiency in the inner mitochondrial membrane peptidase 2-like (Immp21) gene increases ischemic brain damage and impairs mitochondrial function,” Neurobiology of Disease, vol. 44, no. 3, pp. 270–276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. A. Novgorodov and T. I. Gudz, “Ceramide and mitochondria in ischemic brain injury,” International Journal of Biochemistry and Molecular Biology, vol. 2, no. 4, pp. 347–361, 2011. View at Google Scholar · View at Scopus
  19. J. Li, X. Ma, W. Yu et al., “Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats,” PLoS One, vol. 7, no. 9, Article ID e46498, 2012. View at Google Scholar
  20. U. Pontén, R. A. Ratcheson, L. G. Salford, and B. K. Siesjo, “Optimal freezing conditions for cerebral metabolites in rats,” Journal of Neurochemistry, vol. 21, no. 5, pp. 1127–1138, 1973. View at Google Scholar · View at Scopus
  21. M. Erecińska and I. A. Silver, “ATP and brain function,” Journal of Cerebral Blood Flow & Metabolism, vol. 9, no. 1, pp. 2–19, 1989. View at Google Scholar
  22. P. Safar, W. Behringer, B. W. Böttiger, and F. Sterz, “Cerebral resuscitation potentials for cardiac arrest,” Critical Care Medicine, vol. 30, no. 4, pp. S140–S144, 2002. View at Google Scholar · View at Scopus
  23. R. C. Crumrine, J. C. LaManna, and W. D. Lust, “Regional changes in intracellular pH determined by neutral red histophotometry and high energy metabolites during cardiac arrest and following resuscitation in the rat,” Metabolic Brain Disease, vol. 6, no. 3, pp. 145–155, 1991. View at Google Scholar · View at Scopus
  24. R. C. Crumrine and J. C. LaManna, “Regional cerebral metabolites, blood flow, plasma volume, and mean transit time in total cerebral ischemia in the rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 11, no. 2, pp. 272–282, 1991. View at Google Scholar · View at Scopus
  25. J. C. LaManna, J. K. Griffith, B. R. Cordisco et al., “Rapid recovery of rat brain intracellular pH after cardiac arrest and resuscitation,” Brain Research, vol. 687, no. 1-2, pp. 175–181, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Hoxworth, K. Xu, Y. Zhou, W. D. Lust, and J. C. Lamanna, “Cerebral metabolic profile, selective neuron loss, and survival of acute and chronic hyperglycemic rats following cardiac arrest and resuscitation,” Brain Research, vol. 821, no. 2, pp. 467–479, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. S. R. Wagner IV and W. L. Lanier, “Metabolism of glucose, glycogen, and high-energy phosphates during complete cerebral ischemia: a comparison of normoglycemic, chronically hyperglycemic diabetic, and acutely hyperglycemic nondiabetic rats,” Anesthesiology, vol. 81, no. 6, pp. 1516–1526, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Seidl, S. Stöckler-Ipsiroglu, B. Rolinski et al., “Energy metabolism in graded perinatal asphyxia of the rat,” Life Sciences, vol. 67, no. 4, pp. 421–435, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. H. J. Choi, T. Nguyen, K. S. Park et al., “Effect of cardiopulmonary resuscitation on restoration of myocardial ATP in prolonged ventricular fibrillation,” Resuscitation, vol. 84, no. 1, pp. 108–113, 2013. View at Google Scholar
  30. A. Brand, S. Gil, D. Leibfritz, and E. Yavin, “Direct administration and utilization of [1-13C] glucose by fetal brain and liver tissues under normal and ischemic conditions: 1H, 31P, and 13C NMR studies,” Journal of Neuroscience Research, vol. 54, no. 1, pp. 97–108, 1998. View at Google Scholar
  31. B. Kunievsky, J. Pretsky, and E. Yavin, “Transient rise of glucose uptake in the fetal rat brain after brief episodes of intrauterine ischemia,” Developmental Neuroscience, vol. 16, no. 5-6, pp. 313–320, 1994. View at Google Scholar · View at Scopus
  32. C. T. O'Shaughnessy, D. J. Lythgoe, S. P. Butcher, L. Kendall, B. Wood, and M. C. Steward, “Effects of hypoxia on fetal rat brain metabolism studied in utero by 31P-NMR spectroscopy,” Brain Research, vol. 551, no. 1-2, pp. 334–337, 1991. View at Google Scholar · View at Scopus
  33. M. S. Tsai, C. H. Huang, S. H. Tsai et al., “The difference in myocardial injuries and mitochondrial damages between asphyxial and ventricular fibrillation cardiac arrests,” The American Journal of Emergency Medicine, vol. 30, no. 8, pp. 1540–1548, 2012. View at Google Scholar
  34. S. T. Yeh, H.-L. Lee, S. E. Aune, C.-L. Chen, Y.-R. Chen, and M. G. Angelos, “Preservation of mitochondrial function with cardiopulmonary resuscitation in prolonged cardiac arrest in rats,” Journal of Molecular and Cellular Cardiology, vol. 47, no. 6, pp. 789–797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Rouslin and S. Ranganathan, “Impaired function of mitochondrial electron transfer complex I in canine myocardial ischemia: loss of flavin mononucleotide,” Journal of Molecular and Cellular Cardiology, vol. 15, no. 8, pp. 537–542, 1983. View at Google Scholar · View at Scopus
  36. W. Rouslin, “Effects of acidosis and ATP depletion on cardiac muscle electron transfer complex I,” Journal of Molecular and Cellular Cardiology, vol. 23, no. 10, pp. 1127–1135, 1991. View at Publisher · View at Google Scholar · View at Scopus