Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 324230, 17 pages
http://dx.doi.org/10.1155/2014/324230
Review Article

Peroxynitrite and Peroxiredoxin in the Pathogenesis of Experimental Amebic Liver Abscess

1Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, IPN, Plan de San Luis y Díaz Mirón s/n, 11340 México, DF, Mexico
2Departamento de Morfología, Escuela Superior de Medicina, IPN, Plan de San Luis y Díaz Mirón s/n, 11340 México, DF, Mexico
3Departamento de Bioquimica, Escuela Superior de Medicina, IPN, Plan de San Luis y Díaz Mirón s/n, 11340 México, DF, Mexico

Received 5 November 2013; Accepted 12 March 2014; Published 15 April 2014

Academic Editor: Marlene Benchimol

Copyright © 2014 Judith Pacheco-Yepez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Tsutsumi and A. Martinez-Palomo, “Inflammatory reaction in experimental hepatic amebiasis. An ultrastructural study,” American Journal of Pathology, vol. 130, no. 1, pp. 112–119, 1988. View at Google Scholar · View at Scopus
  2. V. Tsutsumi, R. Mena-Lopez, F. Anaya-Velazquez, and A. Martinez-Palomo, “Cellular bases of experimental amebic liver abscess formation,” American Journal of Pathology, vol. 117, no. 1, pp. 81–91, 1984. View at Google Scholar · View at Scopus
  3. K. Chadee, W. A. Petri Jr., D. J. Innes, and J. I. Ravdin, “Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica,” The Journal of Clinical Investigation, vol. 80, no. 5, pp. 1245–1254, 1987. View at Google Scholar · View at Scopus
  4. J. I. Ravdin, C. F. Murphy, R. A. Salata, R. L. Guerrant, and E. L. Hewlett, “N-acetyl-d-galactosamine-inhibitable adherence lectin of Entamoeba histolytica. I. Partial purification and relation to amoebic virulence in vitro,” Journal of Infectious Diseases, vol. 151, no. 5, pp. 804–815, 1985. View at Google Scholar · View at Scopus
  5. I. Meza, F. Cazares, J. L. Rosales-Encina, P. Talamas-Rohana, and M. Rojkind, “Use of antibodies to characterize a 220-kilodalton surface protein from Entamoeba histolytica,” Journal of Infectious Diseases, vol. 156, no. 5, pp. 798–805, 1987. View at Google Scholar · View at Scopus
  6. G. García-Rivera, M. A. Rodríguez, R. Ocádiz et al., “Entamoeba histolytica: a novel cysteine protease and an adhesin form the 112 kDa surface protein,” Molecular Microbiology, vol. 33, no. 3, pp. 556–568, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. W. A. Petri Jr. and J. I. Ravdin, “Cytopathogenicity of Entamoeba histolytica: the role of amebic adherence and contact-dependent cytolysis in pathogenesis,” European Journal of Epidemiology, vol. 3, no. 2, pp. 123–136, 1987. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Martínez-López, E. Orozco, T. Sánchez, R. M. García-Pérez, F. Hernández-Hernández, and M. A. Rodríguez, “The EhADH112 recombinant polypeptide inhibits cell destruction and liver abscess formation by Entamoeba histolytica trophozoites,” Cellular Microbiology, vol. 6, no. 4, pp. 367–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Ocádiz, E. Orozco, E. Carrillo et al., “EhCP112 is an Entamoeba histolytica secreted cysteine protease that may be involved in the parasite-virulence,” Cellular Microbiology, vol. 7, no. 2, pp. 221–232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. W. A. Petri Jr., “Pathogenesis of amebiasis,” Current Opinion in Microbiology, vol. 5, no. 4, pp. 443–447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Espinosa-Cantellano and A. Martínez-Palomo, “Pathogenesis of intestinal amebiasis: from molecules to disease,” Clinical Microbiology Reviews, vol. 13, no. 2, pp. 318–331, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Hughes, C. W. Lee, C. F. Holm et al., “Identification of Entamoeba histolytica thiol-specific antioxidant as a GalNAc lectin-associated protein,” Molecular and Biochemical Parasitology, vol. 127, no. 2, pp. 113–120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. C. A. Gilchrist and W. A. Petri Jr., “Using differential gene expression to study Entamoeba histolytica pathogenesis,” Trends in Parasitology, vol. 25, no. 3, pp. 124–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. N. C. V. Christy and W. A. Petri Jr., “Mechanisms of adherence, cytotoxicity and phagocytosis modulate the pathogenesis of Entamoeba histolytica,” Future Microbiology, vol. 6, no. 12, pp. 1501–1519, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. W. E. Keene, M. E. Hidalgo, E. Orozco, and J. H. McKerrow, “Entamoeba histolytica: correlation of the cytopathic effect of virulent trophozoites with secretion of a cysteine proteinase,” Experimental Parasitology, vol. 71, no. 2, pp. 199–206, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Matthiesen, A. K. Bar, A. K. Bartels et al., “Overexpression of specific cysteine peptidases confers pathogenicity to a nonpathogenic Entamoeba histolytica clone,” mBio, vol. 4, no. 2, 2013. View at Publisher · View at Google Scholar
  17. S. L. Stanley Jr., T. Zhang, D. Rubin, and E. Li, “Role of the Entamoeba histolytica cysteine proteinase in amebic liver abscess formation in severe combined immunodeficient mice,” Infection and Immunity, vol. 63, no. 4, pp. 1587–1590, 1995. View at Google Scholar · View at Scopus
  18. S. Ankri, T. Stolarsky, R. Bracha, F. Padilla-Vaca, and D. Mirelman, “Antisense inhibition of expression of cysteine proteinases affects Entamoeba histolytica-induced formation of liver abscess in hamsters,” Infection and Immunity, vol. 67, no. 1, pp. 421–422, 1999. View at Google Scholar · View at Scopus
  19. M. Tillack, N. Nowak, H. Lotter et al., “Increased expression of the major cysteine proteinases by stable episomal transfection underlines the important role of EhCP5 for the pathogenicity of Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 149, no. 1, pp. 58–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Bansal, P. Ave, S. Kerneis et al., “An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis,” PLoS Neglected Tropical Diseases, vol. 3, no. 11, article e551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. D. Horstmann, M. Leippe, and E. Tannich, “Host tissue destruction by Entamoeba histolytica: molecules mediating adhesion, cytolysis, and proteolysis,” Memorias do Instituto Oswaldo Cruz, vol. 87, supplement 5, pp. 57–60, 1992. View at Google Scholar · View at Scopus
  22. X. Que and S. L. Reed, “Cysteine proteinases and the pathogenesis of amebiasis,” Clinical Microbiology Reviews, vol. 13, no. 2, pp. 196–206, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Pertuz Belloso, P. Ostoa Saloma, I. Benitez, G. Soldevila, A. Olivos, and E. García-Zepeda, “Entamoeba histolytica cysteine protease 2 (EhCP2) modulates leucocyte migration by proteolytic cleavage of chemokines,” Parasite Immunology, vol. 26, no. 5, pp. 237–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Que, S.-H. Kim, M. Sajid et al., “A surface amebic cysteine proteinase inactivates interleukin-18,” Infection and Immunity, vol. 71, no. 3, pp. 1274–1280, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Zhang, L. Wang, K. B. Seydel et al., “Entamoeba histolytica cysteine proteinases with interleukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis,” Molecular Microbiology, vol. 37, no. 3, pp. 542–548, 2000. View at Google Scholar · View at Scopus
  26. C. A. Gilchrist and W. A. Petri Jr., “Virulence factors of Entamoeba histolytica,” Current Opinion in Microbiology, vol. 2, no. 4, pp. 433–437, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Hou, L. Mortimer, and K. Chadee, “Entamoeba histolytica cysteine proteinase 5 binds integrin on colonic cells and stimulates NFκB-mediated pro-inflammatory responses,” The Journal of Biological Chemistry, vol. 285, no. 46, pp. 35497–35504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Irmer, M. Tillack, L. Biller et al., “Major cysteine peptidases of Entamoeba histolytica are required for aggregation and digestion of erythrocytes but are dispensable for phagocytosis and cytopathogenicity,” Molecular Microbiology, vol. 72, no. 3, pp. 658–667, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Olivos-García, E. Tello, M. Nequiz-Avendaño et al., “Cysteine proteinase activity is required for survival of the parasite in experimental acute amoebic liver abscesses in hamsters,” Parasitology, vol. 129, no. 1, pp. 19–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Dey, K. Keller, A. Belley, and K. Chadee, “Identification and characterization of a cyclooxygenase-like enzyme from Entamoeba histolytica,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13561–13566, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Campos-Rodríguez, R. A. Jarillo-Luna, B. A. Larsen, V. Rivera-Aguilar, and J. Ventura-Juárez, “Invasive amebiasis: a microcirculatory disorder?” Medical Hypotheses, vol. 73, no. 5, pp. 687–697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. L. Griffin, “Human amebic dysentery. Electron microscopy of Entamoeba histolytica contacting, ingesting, and digesting inflammatory cells,” American Journal of Tropical Medicine and Hygiene, vol. 21, no. 6, pp. 895–906, 1972. View at Google Scholar · View at Scopus
  33. F. Pittman, J. C. Pittman, and W. K. el-Hashimi, “Human amebiasis. Light and electron microscopy findings in colonic mucosal biopsies from patients with acute amebic colitis,” in Proceedings of the International Conference on Amebiasis, B. Sepulveda and L. S. Diamond, Eds., pp. 398–417, Mexico City, Mexico, 1976.
  34. S. Blazquez, M.-C. Rigothier, M. Huerre, and N. Guillén, “Initiation of inflammation and cell death during liver abscess formation by Entamoeba histolytica depends on activity of the galactose/N-acetyl-d-galactosamine lectin,” International Journal for Parasitology, vol. 37, no. 3-4, pp. 425–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Tavares, M.-C. Rigothier, H. Khun, P. Roux, M. Huerre, and N. Guillén, “Roles of cell adhesion and cytoskeleton activity in Entamoeba histolytica pathogenesis: a delicate balance,” Infection and Immunity, vol. 73, no. 3, pp. 1771–1778, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Aguirre-García, “Histopathological peculiarities of the amebic lesion,” Archivos de Investigacion Medica, vol. 1, supplement, pp. 147–156, 1970. View at Google Scholar · View at Scopus
  37. K. Chadee and E. Meerovitch, “The pathogenesis of experimentally induced amebic liver abscess in the gerbil (Meriones unguiculatus),” American Journal of Pathology, vol. 117, no. 1, pp. 71–80, 1984. View at Google Scholar · View at Scopus
  38. W. B. Lushbaugh, A. B. Kairalla, A. F. Hofbauer, and F. E. Pittman, “Sequential histopathology of cavitary liver abscess formation induced by axenically grown Entamoeba histolytica,” Archivos de Investigacion Medica, vol. 11, no. 1, pp. 163–168, 1980. View at Google Scholar · View at Scopus
  39. O. Berninghausen and M. Leippe, “Necrosis versus apoptosis as the mechanism of target cell death induced by Entamoeba histolytica,” Infection and Immunity, vol. 65, no. 9, pp. 3615–3621, 1997. View at Google Scholar · View at Scopus
  40. K. B. Seydel and S. L. Stanley Jr., “Entamoeba histolytica induces host cell death in amebic liver abscess by a non-fas-dependent, non-tumor necrosis factor alpha-dependent pathway of apoptosis,” Infection and Immunity, vol. 66, no. 6, pp. 2980–2983, 1998. View at Google Scholar · View at Scopus
  41. C. Velazquez, M. Shibayama-Salas, J. Aguirre-Garcia, V. Tsutsumi, and J. Calderon, “Role of neutrophils in innate resistance to Entamoeba histolytica liver infection in mice,” Parasite Immunology, vol. 20, no. 6, pp. 255–262, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Olivos-García, J. C. Carrero, E. Ramos et al., “Late experimental amebic liver abscess in hamster is inhibited by cyclosporine and N-acetylcysteine,” Experimental and Molecular Pathology, vol. 82, no. 3, pp. 310–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Perez-Tamayo, R. D. Martinez, I. Montfort, I. Becker, E. Tello, and R. Perez-Montfort, “Pathogenesis of acute experimental amebic liver abscess in hamsters,” Journal of Parasitology, vol. 77, no. 6, pp. 982–988, 1991. View at Google Scholar · View at Scopus
  44. R. Pérez-Tamayo, I. Montfort, A. O. García, E. Ramos, and C. B. Ostria, “Pathogenesis of acute experimental liver amebiasis,” Archives of Medical Research, vol. 37, no. 2, pp. 203–209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. R. B. I. Pérez-Tamayo, I. Montfort, and R. Pérez-Montfort, “Pathobiology of amebiasis,” in Amebiasis: Infection and Disease by Entamoeba Histolytica, R. R. Krestchmer, Ed., pp. 123–157, CRC Press, Boca Raton, Fla, USA, 1990. View at Google Scholar
  46. S. L. Stanley Jr., “Pathophysiology of amoebiasis,” Trends in Parasitology, vol. 17, no. 6, pp. 280–285, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Olivos-García, E. Saavedra, E. Ramos-Martínez, M. Nequiz, and R. Pérez-Tamayo, “Molecular nature of virulence in Entamoeba histolytica,” Infection, Genetics and Evolution, vol. 9, no. 6, pp. 1033–1037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Ramos, A. Olivos-García, M. Nequiz et al., “Entamoeba histolytica: apoptosis induced in vitro by nitric oxide species,” Experimental Parasitology, vol. 116, no. 3, pp. 257–265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Mortimer and K. Chadee, “The immunopathogenesis of Entamoeba histolytica,” Experimental Parasitology, vol. 126, no. 3, pp. 366–380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. K. S. Ralston and W. A. Petri Jr., “Tissue destruction and invasion by Entamoeba histolytica,” Trends in Parasitology, vol. 27, no. 6, pp. 254–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Santi-Rocca, M.-C. Rigothier, and N. Guillén, “Host-microbe interactions and defense mechanisms in the development of amoebic liver abscesses,” Clinical Microbiology Reviews, vol. 22, no. 1, pp. 65–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Pacheco-Yépez, R. Campos-Rodríguez, M. Shibayama, J. Ventura-Juárez, J. Serrano-Luna, and V. Tsutsumi, “Entamoeba histolytica: production of nitric oxide and in situ activity of NADPH diaphorase in amebic liver abscess of hamsters,” Parasitology Research, vol. 87, no. 1, pp. 49–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Ramírez-Emiliano, A. González-Hernández, and S. Arias-Negrete, “Expression of inducible nitric oxide synthase mRNA and nitric oxide production during the development of liver abscess in hamster inoculated with Entamoeba histolytica,” Current Microbiology, vol. 50, no. 6, pp. 299–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Y. Lin and K. Chadee, “Macrophage cytotoxicity against Entamoeba histolytica trophozoites is mediated by nitric oxide from L-arginine,” Journal of Immunology, vol. 148, no. 12, pp. 3999–4005, 1992. View at Google Scholar · View at Scopus
  55. J.-Y. Lin, R. Seguin, K. Keller, and K. Chadee, “Tumor necrosis factor alpha augments nitric oxide-dependent macrophage cytotoxicity against Entamoeba histolytica by enhanced expression of the nitric oxide synthase gene,” Infection and Immunity, vol. 62, no. 5, pp. 1534–1541, 1994. View at Google Scholar · View at Scopus
  56. R. A. Jarillo-Luna, R. Campos-Rodríguez, and V. Tsutsumi, “Entamoeba histolytica: immunohistochemical study of hepatic amoebiasis in mouse. Neutrophils and nitric oxide as possible factors of resistance,” Experimental Parasitology, vol. 101, no. 1, pp. 40–56, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Ghadirian, S. D. Somerfield, and P. A. L. Kongshavn, “Susceptibility of Entamoeba histolytica to oxidants,” Infection and Immunity, vol. 51, no. 1, pp. 263–267, 1986. View at Google Scholar · View at Scopus
  58. H. W. Murray, S. B. Aley, and W. A. Scott, “Susceptibility of Entamoeba histolytica to oxygen intermediates,” Molecular and Biochemical Parasitology, vol. 3, no. 6, pp. 381–391, 1981. View at Google Scholar · View at Scopus
  59. R. A. Salata, R. D. Pearson, and J. I. Ravdin, “Interaction of human leukocytes and Entamoeba histolytica: killing of virulent amebae by the activated macrophage,” The Journal of Clinical Investigation, vol. 76, no. 2, pp. 491–499, 1985. View at Google Scholar · View at Scopus
  60. K. B. Seydel, S. J. Smith, and S. L. Stanley Jr., “Innate immunity to amebic liver abscess is dependent on gamma interferon and nitric oxide in a murine model of disease,” Infection and Immunity, vol. 68, no. 1, pp. 400–402, 2000. View at Google Scholar · View at Scopus
  61. R. Siman-Tov and S. Ankri, “Nitric oxide inhibits cysteine proteinases and alcohol dehydrogenase 2 of Entamoeba histolytica,” Parasitology Research, vol. 89, no. 2, pp. 146–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Santi-Rocca, S. Smith, C. Weber et al., “Endoplasmic reticulum stress-sensing mechanism is activated in Entamoeba histolytica upon treatment with nitric oxide,” PLoS ONE, vol. 7, no. 2, Article ID e31777, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. M.-H. Choi, D. Sajed, L. Poole et al., “An unusual surface peroxiredoxin protects invasive Entamoeba histolytica from oxidant attack,” Molecular and Biochemical Parasitology, vol. 143, no. 1, pp. 80–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. M. A. Akbar, N. S. Chatterjee, P. Sen et al., “Genes induced by a high-oxygen environment in Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 133, no. 2, pp. 187–196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. B. Loftus, I. Anderson, R. Davies et al., “The genome of the protist parasite Entamoeba histolytica,” Nature, vol. 433, no. 7028, pp. 865–868, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. R. C. MacFarlane and U. Singh, “Identification of differentially expressed genes in virulent and nonvirulent Entamoeba species: potential implications for amebic pathogenesis,” Infection and Immunity, vol. 74, no. 1, pp. 340–351, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Goldstein and G. Merényi, “The chemistry of peroxynitrite: implications for biological activity,” Methods in Enzymology, vol. 436, pp. 49–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Szabó, H. Ischiropoulos, and R. Radi, “Peroxynitrite: biochemistry, pathophysiology and development of therapeutics,” Nature Reviews Drug Discovery, vol. 6, no. 8, pp. 662–680, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Radi, A. Denicola, B. Alvarez, G. Ferrer-Sueta, and H. Rubbo, “The biological chemistry of peroxynitrite,” in Nitric Oxide: Biology and Pathobiology, L. J. Ignarro, Ed., pp. 57–82, Academic Press, San Diego, Calif, USA, 2000. View at Google Scholar
  71. M. E. Quintanar-Quintanar, A. Jarillo-Luna, V. Rivera-Aguilar et al., “Immunosuppressive treatment inhibits the development of amebic liver abscesses in hamsters,” Medical Science Monitor, vol. 10, no. 9, pp. BR317–BR324, 2004. View at Google Scholar · View at Scopus
  72. J.-M. Li and A. M. Shah, “Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 287, no. 5, pp. R1014–R1030, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Google Scholar · View at Scopus
  74. W. Wang, K. Keller, and K. Chadee, “Entamoeba histolytica modulates the nitric oxide synthase gene and nitric oxide production by macrophages for cytotoxicity against amoebae and tumour cells,” Immunology, vol. 83, no. 4, pp. 601–610, 1994. View at Google Scholar · View at Scopus
  75. S. Moncada, “Nitric oxide: discovery and impact on clinical medicine,” Journal of the Royal Society of Medicine, vol. 92, no. 4, pp. 164–169, 1999. View at Google Scholar · View at Scopus
  76. Y. Xia and J. L. Zweier, “Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 13, pp. 6954–6958, 1997. View at Publisher · View at Google Scholar · View at Scopus
  77. J. E. Albina, M. D. Caldwell, W. L. Henry Jr., and C. D. Mills, “Regulation of macrophage functions by L-arginine,” Journal of Experimental Medicine, vol. 169, no. 3, pp. 1021–1029, 1989. View at Google Scholar · View at Scopus
  78. J. E. Albina, W. L. Henry Jr., B. Mastrofrancesco, B.-A. Martin, and J. S. Reichner, “Macrophage activation by culture in an anoxic environment,” Journal of Immunology, vol. 155, no. 9, pp. 4391–4396, 1995. View at Google Scholar · View at Scopus
  79. J. E. Albina, C. D. Mills, W. L. Henry Jr., and M. D. Caldwell, “Regulation of macrophage physiology by L-arginine: role of the oxidative L-arginine deiminase pathway,” Journal of Immunology, vol. 143, no. 11, pp. 3641–3646, 1989. View at Google Scholar · View at Scopus
  80. J. E. Albina, C. D. Mills, W. L. Henry Jr., and M. D. Caldwell, “Temporal expression of different pathways of l-arginine metabolism in healing wounds,” Journal of Immunology, vol. 144, no. 10, pp. 3877–3880, 1990. View at Google Scholar · View at Scopus
  81. M. A. Robinson, J. E. Baumgardner, V. P. Good, and C. M. Otto, “Physiological and hypoxic O2 tensions rapidly regulate NO production by stimulated macrophages,” American Journal of Physiology—Cell Physiology, vol. 294, no. 4, pp. C1079–C1087, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Peyssonnaux, V. Datta, T. Cramer et al., “HIF-1α expression regulates the bactericidal capacity of phagocytes,” The Journal of Clinical Investigation, vol. 115, no. 7, pp. 1806–1815, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. V. Nizet and R. S. Johnson, “Interdependence of hypoxic and innate immune responses,” Nature Reviews Immunology, vol. 9, no. 9, pp. 609–617, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Krotova, J. M. Patel, E. R. Block, and S. Zharikov, “Hypoxic upregulation of arginase II in human lung endothelial cells,” American Journal of Physiology—Cell Physiology, vol. 299, no. 6, pp. C1541–C1548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. W. Durante, F. K. Johnson, and R. A. Johnson, “Arginase: a critical regulator of nitric oxide synthesis and vascular function,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 9, pp. 906–911, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Xia, V. L. Dawson, T. M. Dawson, S. H. Snyder, and J. L. Zweier, “Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 13, pp. 6770–6774, 1996. View at Google Scholar · View at Scopus
  87. G. E. Arteel, M. B. Kadiiska, I. Rusyn et al., “Oxidative stress occurs in perfused rat liver at low oxygen tension by mechanisms involving peroxynitrite,” Molecular Pharmacology, vol. 55, no. 4, pp. 708–715, 1999. View at Google Scholar · View at Scopus
  88. C. Szabó, “Pathopysiological roles of nitric oxide in inflammation,” in Nitric Oxide: Biology and Pathobiology, L. J. Ignarro, Ed., pp. 841–872, Academic Press, San Diego, Calif, USA, 2000. View at Google Scholar
  89. Y. Gao, “The multiple actions of NO,” Pflugers Archiv—European Journal of Physiology, vol. 459, no. 6, pp. 829–839, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. G. E. Arteel, K. Briviba, and H. Sies, “Protection against peroxynitrite,” FEBS Letters, vol. 445, no. 2-3, pp. 226–230, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. L.-O. Klotz and H. Sies, “Defenses against peroxynitrite: selenocompounds and flavonoids,” Toxicology Letters, vol. 140-141, pp. 125–132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. D. G. Arias, E. L. Regner, A. A. Iglesias, and S. A. Guerrero, “Entamoeba histolytica thioredoxin reductase: molecular and functional characterization of its atypical properties,” Biochimica et Biophysica Acta, vol. 1820, pp. 1859–1866, 2012. View at Google Scholar
  93. L. Ignarro, “Introduction and overview,” in Nitric Oxide: Biology and Pathobiology, L. Ignarro, Ed., pp. 3–19, Academic Press, San Diego, Calif, USA, 2000. View at Google Scholar
  94. J. R. Lancaster Jr., “Simulation of the diffusion and reaction of endogenously produced nitric oxide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 17, pp. 8137–8141, 1994. View at Publisher · View at Google Scholar · View at Scopus
  95. X. Liu, Q. Yan, K. L. Baskerville, and J. L. Zweier, “Estimation of nitric oxide concentration in blood for different rates of generation: evidence that intravascular nitric oxide levels are too low to exert physiological effects,” The Journal of Biological Chemistry, vol. 282, no. 12, pp. 8831–8836, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. X. Liu, M. J. S. Miller, M. S. Joshi, D. D. Thomas, and J. R. Lancaster Jr., “Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2175–2179, 1998. View at Publisher · View at Google Scholar · View at Scopus
  97. K. L. Davis, E. Martin, I. V. Turko, and F. Murad, “Novel effects of nitric oxide,” Annual Review of Pharmacology and Toxicology, vol. 41, pp. 203–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. G. Rico, E. Leandro, S. Rojas, J. A. Giménez, and R. R. Kretschmer, “The monocyte locomotion inhibitory factor produced by Entamoeba histolytica inhibits induced nitric oxide production in human leukocytes,” Parasitology Research, vol. 90, no. 4, pp. 264–267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. K. Elnekave, R. Siman-Tov, and S. Ankri, “Consumption of L-arginine mediated by Entamoeba histolytica L-arginase (EhArg) inhibits amoebicidal activity and nitric oxide production by activated macrophages,” Parasite Immunology, vol. 25, no. 11-12, pp. 597–608, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. D. G. Arias, C. E. Gutierrez, A. A. Iglesias, and S. A. Guerrero, “Thioredoxin-linked metabolism in Entamoeba histolytica,” Free Radical Biology and Medicine, vol. 42, no. 10, pp. 1496–1505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. S. G. Rhee, H. Z. Chae, and K. Kim, “Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling,” Free Radical Biology and Medicine, vol. 38, no. 12, pp. 1543–1552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. E. S. J. Arnér, “Focus on mammalian thioredoxin reductases—important selenoproteins with versatile functions,” Biochimica et Biophysica Acta, vol. 1790, no. 6, pp. 495–526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. C. H. Williams Jr., L. D. Arscott, S. Müller et al., “Thioredoxin reductase: two modes of catalysis have evolved,” European Journal of Biochemistry, vol. 267, no. 20, pp. 6110–6117, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Holmgren and J. Lu, “Thioredoxin and thioredoxin reductase: current research with special reference to human disease,” Biochemical and Biophysical Research Communications, vol. 396, no. 1, pp. 120–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. D. G. Arias, P. G. Carranza, H. D. Lujan, A. A. Iglesias, and S. A. Guerrero, “Immunolocalization and enzymatic functional characterization of the thioredoxin system in Entamoeba histolytica,” Free Radical Biology and Medicine, vol. 45, no. 1, pp. 32–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. M. K. Sawyer, J. M. Bischoff, M. A. Guidry, and R. E. Reeves, “Lipids from Entamoeba histolytica,” Experimental Parasitology, vol. 20, no. 3, pp. 295–302, 1967. View at Google Scholar · View at Scopus
  107. H. Z. Chae, S. J. Chung, and S. G. Rhee, “Thioredoxin-dependent peroxide reductase from yeast,” The Journal of Biological Chemistry, vol. 269, no. 44, pp. 27670–27678, 1994. View at Google Scholar · View at Scopus
  108. Z. A. Wood, E. Schröder, J. Robin Harris, and L. B. Poole, “Structure, mechanism and regulation of peroxiredoxins,” Trends in Biochemical Sciences, vol. 28, no. 1, pp. 32–40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. E. Schroder, J. A. Littlechild, A. A. Lebedev, N. Errington, A. A. Vagin, and M. N. Isupov, “Crystal structure of decameric 2-cys peroxiredoxin from human erythrocytes at 1.7 a resolution,” Structure, vol. 8, pp. 605–615, 2000. View at Google Scholar
  110. A. S. Ghosh, S. Dutta, and S. Raha, “Hydrogen peroxide-induced apoptosis-like cell death in Entamoeba histolytica,” Parasitology International, vol. 59, no. 2, pp. 166–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. I. Bruchhaus, S. Richter, and E. Tannich, “Removal of hydrogen peroxide by the 29 kDa protein of Entamoeba histolytica,” Biochemical Journal, vol. 326, part 3, pp. 785–789, 1997. View at Google Scholar · View at Scopus
  112. B. M. Flores, M. A. Batzer, M. A. Stein, C. Petersen, D. L. Diedrich, and B. E. Torian, “Structural analysis and demonstration of the 29 kDa antigen of pathogenic Entamoeba histolytica as the major accessible free thiol-containing surface protein,” Molecular Microbiology, vol. 7, no. 5, pp. 755–763, 1993. View at Google Scholar · View at Scopus
  113. B. M. Flores, S. L. Reed, J. I. Ravdin, and B. E. Torian, “Serologic reactivity to purified recombinant and native 29-kilodalton peripheral membrane protein of pathogenic Entamoeba histolytica,” Journal of Clinical Microbiology, vol. 31, no. 6, pp. 1403–1407, 1993. View at Google Scholar · View at Scopus
  114. X.-J. Cheng, E. Yoshihara, T. Takeuchi, and H. Tachibana, “Molecular characterization of peroxiredoxin from Entamoeba moshkovskii and a comparison with Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 138, no. 2, pp. 195–203, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. L. B. Poole, H. Z. Chae, B. M. Flores, S. L. Reed, S. G. Rhee, and B. E. Torian, “Peroxidase activity of a TSA-like antioxidant protein from a pathogenic amoeba,” Free Radical Biology and Medicine, vol. 23, no. 6, pp. 955–959, 1997. View at Publisher · View at Google Scholar · View at Scopus
  116. P. H. Davis, X. Zhang, J. Guo, R. R. Townsend, and S. L. Stanley Jr., “Comparative proteomic analysis of two Entamoeba histolytica strains with different virulence phenotypes identifies peroxiredoxin as an important component of amoebic virulence,” Molecular Microbiology, vol. 61, no. 6, pp. 1523–1532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. E. Ramos-Martínez, A. Olivos-García, E. Saavedra et al., “Entamoeba histolytica: oxygen resistance and virulence,” International Journal for Parasitology, vol. 39, no. 6, pp. 693–702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Sen, N. S. Chatterjee, M. A. Akbar, N. Nandi, and P. Das, “The 29-kilodalton thiol-dependent peroxidase of Entamoeba histolytica is a factor involved in pathogenesis and survival of the parasite during oxidative stress,” Eukaryotic Cell, vol. 6, no. 4, pp. 664–673, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. I. Bruchhaus, T. Roeder, H. Lotter, M. Schwerdtfeger, and E. Tannich, “Differential gene expression in Entamoeba histolytica isolated from amoebic liver abscess,” Molecular Microbiology, vol. 44, no. 4, pp. 1063–1072, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. E. R. Houpt, D. J. Glembocki, T. G. Obrig et al., “The mouse model of amebic colitis reveals mouse strain susceptibility to infection and exacerbation of disease by CD4+ T cells,” Journal of Immunology, vol. 169, no. 8, pp. 4496–4503, 2002. View at Google Scholar · View at Scopus
  121. J. Santi-Rocca, C. Weber, G. Guigon, O. Sismeiro, J.-Y. Coppée, and N. Guillén, “The lysine- and glutamic acid-rich protein KERP1 plays a role in Entamoeba histolytica liver abscess pathogenesis,” Cellular Microbiology, vol. 10, no. 1, pp. 202–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. B. Jiménez-Delgadillo, P. P. Chaudhuri, L. Baylón-Pacheco, A. López-Monteon, P. Talamás-Rohana, and J. L. Rosales-Encina, “Entamoeba histolytica: cDNAs cloned as 30 kDa collagen-binding proteins (CBP) belong to an antioxidant molecule family. Protection of hamsters from amoebic liver abscess by immunization with recombinant CBP,” Experimental Parasitology, vol. 108, no. 1-2, pp. 7–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. M. C. González-Vázquez, A. Carabarin-Lima, L. Baylón-Pacheco, P. Talamás-Rohana, and J. L. Rosales-Encina, “Obtaining of three recombinant antigens of Entamoeba histolytica and evaluation of their immunogenic ability without adjuvant in a hamster model of immunoprotection,” Acta Tropica, vol. 122, no. 2, pp. 169–176, 2012. View at Publisher · View at Google Scholar · View at Scopus
  124. C.-J. G. Soong, B. E. Torian, M. D. Abd-Alla, T. F. H. G. Jackson, V. Gatharim, and J. I. Ravdin, “Protection of gerbils from amebic liver abscess by immunization with recombinant Entamoeba histolytica 29-kilodalton antigen,” Infection and Immunity, vol. 63, no. 2, pp. 472–477, 1995. View at Google Scholar · View at Scopus
  125. Z. A. Wood, L. B. Poole, R. R. Hantgan, and P. A. Karplus, “Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins,” Biochemistry, vol. 41, no. 17, pp. 5493–5504, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. J. R. Harris, E. Schröder, M. N. Isupov et al., “Comparison of the decameric structure of peroxiredoxin-II by transmission electron microscopy and X-ray crystallography,” Biochimica et Biophysica Acta, vol. 1547, no. 2, pp. 221–234, 2001. View at Publisher · View at Google Scholar · View at Scopus
  127. R. Bryk, P. Griffin, and C. Nathan, “Peroxynitrite reductase activity of bacterial peroxiredoxins,” Nature, vol. 407, no. 6801, pp. 211–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Trujillo, H. Budde, M. D. Piñeyro et al., “Trypanosoma brucei and Trypanosoma cruzi tryparedoxin peroxidases catalytically detoxify peroxynitrite via oxidation of fast reacting thiols,” The Journal of Biological Chemistry, vol. 279, no. 33, pp. 34175–34182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Trujillo, G. Ferrer-Sueta, and R. Radi, “Kinetic studies on peroxynitrite reduction by peroxiredoxins,” Methods in Enzymology, vol. 441, pp. 173–196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Dubuisson, D. Vander Stricht, A. Clippe et al., “Human peroxiredoxin 5 is a peroxynitrite reductase,” FEBS Letters, vol. 571, no. 1–3, pp. 161–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  131. H. Tachibana, S. Kobayashi, Y. Kato, K. Nagakura, Y. Kaneda, and T. Takeuchi, “Identification of a pathogenic isolate-specific 30,000-M(r) antigen of Entamoeba histolytica by using a monoclonal antibody,” Infection and Immunity, vol. 58, no. 4, pp. 955–960, 1990. View at Google Scholar · View at Scopus
  132. B. E. Torian, B. M. Flores, V. L. Stroeher, F. S. Hagen, and W. E. Stamm, “cDNA sequence analysis of a 29-kDa cysteine-rich surface antigen of pathogenic Entamoeba histolytica,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 16, pp. 6358–6362, 1990. View at Publisher · View at Google Scholar · View at Scopus
  133. S. L. Reed, B. M. Flores, M. A. Batzer et al., “Molecular and cellular characterization of the 29-kilodalton peripheral membrane protein of Entamoeba histolytica: differentiation between pathogenic and nonpathogenic isolates,” Infection and Immunity, vol. 60, no. 2, pp. 542–549, 1992. View at Google Scholar · View at Scopus
  134. J. O. Andersson, R. P. Hirt, P. G. Foster, and A. J. Roger, “Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes,” BMC Evolutionary Biology, vol. 6, article 27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. A. di Matteo, F. M. Scandurra, F. Testa et al., “The O2-scavenging flavodiiron protein in the human parasite Giardia intestinalis,” The Journal of Biological Chemistry, vol. 283, no. 7, pp. 4061–4068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. P. Sarti, P. L. Fiori, E. Forte et al., “Trichomonas vaginalis degrades nitric oxide and expresses a flavorubredoxin-like protein: a new pathogenic mechanism?” Cellular and Molecular Life Sciences, vol. 61, no. 5, pp. 618–623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. J. B. Vicente, F. Testa, D. Mastronicola et al., “Redox properties of the oxygen-detoxifying flavodiiron protein from the human parasite Giardia intestinalis,” Archives of Biochemistry and Biophysics, vol. 488, no. 1, pp. 9–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. T. Smutná, V. L. Gonçalves, L. M. Saraiva, J. Tachezy, M. Teixeira, and I. Hrdý, “Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase,” Eukaryotic Cell, vol. 8, no. 1, pp. 47–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. J. B. Vicente, M. A. Carrondo, M. Teixeira, and C. Frazão, “Structural studies on flavodiiron proteins,” Methods in Enzymology, vol. 437, pp. 3–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  140. C. M. Gomes, A. Giuffrè, E. Forte et al., “A novel type of nitric-oxide reductase: Escherichia coli flavorubredoxin,” The Journal of Biological Chemistry, vol. 277, no. 28, pp. 25273–25276, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. J. B. Vicente, V. Tran, L. Pinto, M. Teixeira, and U. Singh, “A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica,” Eukaryotic Cell, vol. 11, pp. 1112–1118, 2012. View at Google Scholar
  142. V. Tsutsumi, A. Ramirez-Rosales, H. Lanz-Mendoza et al., “Entamoeba histolytica: erythrophagocytosis, collagenolysis, and liver abscess production as virulence markers,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 86, no. 2, pp. 170–172, 1992. View at Publisher · View at Google Scholar · View at Scopus
  143. K. K. Hirata, X. Que, S. G. Melendez-Lopez et al., “A phagocytosis mutant of Entamoeba histolytica is less virulent due to deficient proteinase expression and release,” Experimental Parasitology, vol. 115, no. 2, pp. 192–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. R. M. Mukherjee, K. C. Bhol, S. Mehra, T. K. Maitra, and K. N. Jalan, “Study of Entamoeba histolytica isolates from Calcutta with special reference to their zymodeme, animal pathogenicity and erythrophagocytosis,” Journal of Diarrhoeal Diseases Research, vol. 9, no. 1, pp. 11–15, 1991. View at Google Scholar · View at Scopus
  145. E. Orozco, G. Guarneros, A. Martinez-Palomo, and T. Sanchez, “Entamoeba histolytica. Phagocytosis as a virulence factor,” Journal of Experimental Medicine, vol. 158, no. 5, pp. 1511–1521, 1983. View at Google Scholar · View at Scopus
  146. L. A. Baxt and U. Singh, “New insights into Entamoeba histolytica pathogenesis,” Current Opinion in Infectious Diseases, vol. 21, no. 5, pp. 489–494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. B. L. Tekwani and R. K. Mehlotra, “Molecular basis of defence against oxidative stress in Entamoeba histolytica and Giardia lamblia,” Microbes and Infection, vol. 1, no. 5, pp. 385–394, 1999. View at Publisher · View at Google Scholar · View at Scopus
  148. R. Bracha and D. Mirelman, “Virulence of Entamoeba histolytica trophozoites. Effects of bacteria, microaerobic conditions, and metronidazole,” Journal of Experimental Medicine, vol. 160, no. 2, pp. 353–368, 1984. View at Google Scholar · View at Scopus
  149. D. Trissl, A. Martinez-Palomo, and M. de la Torre, “Surface properties of Entamoeba: increased rates of human erythrocyte phagocytosis in pathogenic strains,” Journal of Experimental Medicine, vol. 148, no. 5, pp. 1137–1145, 1978. View at Google Scholar · View at Scopus
  150. J. M. Galván-Moroyoqui, M. del Carmen Domínguez-Robles, E. Franco, and I. Meza, “The interplay between Entamoeba and enteropathogenic bacteria modulates epithelial cell damage,” PLoS Neglected Tropical Diseases, vol. 2, no. 7, article e266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. S. Koncarevic, P. Rohrbach, M. Deponte et al., “The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13323–13328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. L. C. Pelosof, P. H. Davis, Z. Zhang, X. Zhang, and S. L. Stanley Jr., “Co-ordinate but disproportionate activation of apoptotic, regenerative and inflammatory pathways characterizes the liver response to acute amebic infection,” Cellular Microbiology, vol. 8, no. 3, pp. 508–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. A. Olivos-García, M. Nequiz-Avendaño, E. Tello et al., “Inflammation, complement, ischemia and amoebic survival in acute experimental amoebic liver abscesses in hamsters,” Experimental and Molecular Pathology, vol. 77, no. 1, pp. 66–71, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. A. Cabassi, E. C. Dumont, H. Girouard et al., “Effects of chronic N-acetylcysteine treatment on the actions of peroxynitrite on aortic vascular reactivity in hypertensive rats,” Journal of Hypertension, vol. 19, no. 7, pp. 1233–1244, 2001. View at Publisher · View at Google Scholar · View at Scopus
  155. M. Zafarullah, W. Q. Li, J. Sylvester, and M. Ahmad, “Molecular mechanisms of N-acetylcysteine actions,” Cellular and Molecular Life Sciences, vol. 60, no. 1, pp. 6–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  156. R. Campos-Rodríguezp and A. Jarillo-Luna, “The pathogenicity of Entamoeba histolytica is related to the capacity of evading innate immunity,” Parasite Immunology, vol. 27, no. 1-2, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. M.-C. Rigothier, H. Khun, P. Tavares, A. Cardona, M. Huerre, and N. Guillén, “Fate of Entamoeba histolytica during establishment of amoebic liver abscess analyzed by quantitative radioimaging and histology,” Infection and Immunity, vol. 70, no. 6, pp. 3208–3215, 2002. View at Publisher · View at Google Scholar · View at Scopus
  158. E. Helk, H. Bernin, T. Ernst et al., “Tnfalpha-mediated liver destruction by kupffer cells and ly6chi monocytes during Entamoeba histolytica infection,” PLoS Pathogens, vol. 9, Article ID e1003096, 2013. View at Google Scholar
  159. C. Maldonado-Bernal, C. J. Kirschning, Y. Rosenstein et al., “The innate immune response to Entamoeba histolytica lipopeptidophosphoglycan is mediated by toll-like receptors 2 and 4,” Parasite Immunology, vol. 27, no. 4, pp. 127–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. M. Sharma, H. Vohra, and D. Bhasin, “Enhanced pro-inflammatory chemokine/cytokine response triggered by pathogenic Entamoeba histolytica: basis of invasive disease,” Parasitology, vol. 131, no. 6, pp. 783–796, 2005. View at Publisher · View at Google Scholar · View at Scopus
  161. R. Perez-Tamayo, I. Montfort, E. Tello, and A. Olivos, “Ischemia in experimental acute amebic liver abscess in hamsters,” International Journal for Parasitology, vol. 22, no. 1, pp. 125–129, 1992. View at Publisher · View at Google Scholar · View at Scopus
  162. X. Forceville, D. Vitoux, R. Gauzit, A. Combes, P. Lahilaire, and P. Chappuis, “Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients,” Critical Care Medicine, vol. 26, no. 9, pp. 1536–1544, 1998. View at Publisher · View at Google Scholar · View at Scopus
  163. R. F. Burk and K. E. Hill, “Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis,” Annual Review of Nutrition, vol. 25, pp. 215–235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  164. L. H. Duntas, “Selenium and inflammation: underlying anti-inflammatory mechanisms,” Hormone and Metabolic Research, vol. 41, no. 6, pp. 443–447, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. L. V. Papp, J. Lu, A. Holmgren, and K. K. Khanna, “From selenium to selenoproteins: synthesis, identity, and their role in human health,” Antioxidants and Redox Signaling, vol. 9, no. 7, pp. 775–806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  166. T. Bosschaerts, M. Guilliams, W. Noel et al., “Alternatively activated myeloid cells limit pathogenicity associated with African trypanosomiasis through the IL-10 inducible gene selenoprotein P,” Journal of Immunology, vol. 180, no. 9, pp. 6168–6175, 2008. View at Google Scholar · View at Scopus
  167. Z. Huang, A. H. Rose, and P. R. Hoffmann, “The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 16, no. 7, pp. 705–743, 2012. View at Publisher · View at Google Scholar · View at Scopus
  168. K. Renko, P. J. Hofmann, M. Stoedter et al., “Down-regulation of the hepatic selenoprotein biosynthesis machinery impairs selenium metabolism during the acute phase response in mice,” The FASEB Journal, vol. 23, no. 6, pp. 1758–1765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. K. Becker, S. Gromer, R. H. Schirmer, and S. Müller, “Thioredoxin reductase as a pathophysiological factor and drug target,” European Journal of Biochemistry, vol. 267, no. 20, pp. 6118–6125, 2000. View at Publisher · View at Google Scholar · View at Scopus
  170. A. Debnath, D. Parsonage, R. M. Andrade et al., “A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target,” Nature Medicine, vol. 18, no. 6, pp. 956–960, 2012. View at Publisher · View at Google Scholar
  171. O. Rackham, A.-M. J. Shearwood, R. Thyer et al., “Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: implications for development of specific inhibitors,” Free Radical Biology and Medicine, vol. 50, no. 6, pp. 689–699, 2011. View at Publisher · View at Google Scholar · View at Scopus
  172. A. Bindoli, M. P. Rigobello, G. Scutari, C. Gabbiani, A. Casini, and L. Messori, “Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs,” Coordination Chemistry Reviews, vol. 253, no. 11-12, pp. 1692–1707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. C. F. Shaw III, “Gold-based therapeutic agents,” Chemical Reviews, vol. 99, no. 9, pp. 2589–2600, 1999. View at Google Scholar · View at Scopus