Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 350504, 17 pages
http://dx.doi.org/10.1155/2014/350504
Review Article

Electroacoustic Stimulation: Now and into the Future

1Bionics Institute, Melbourne, VIC 3002, Australia
2Department of Psychology, University of Melbourne, Melbourne, VIC 3010, Australia
3Department of Otolaryngology, University of Melbourne, Melbourne, VIC 3010, Australia
4Department of Medical Bionics, University of Melbourne, Melbourne, VIC 3010, Australia

Received 16 May 2014; Accepted 4 August 2014; Published 4 September 2014

Academic Editor: Ramesh Rajan

Copyright © 2014 S. Irving et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. S. Roland and E. Tobey, “A tribute to a remarkably sound solution,” Cell, vol. 154, no. 6, pp. 1175–1177, 2013. View at Google Scholar
  2. B. J. Gantz and C. W. Turner, “Combining acoustic and electrical hearing,” The Laryngoscope, vol. 113, no. 10, pp. 1726–1730, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. L. L. Sampaio, M. F. S. Araujo, and C. A. C. P. Oliveira, “New criteria of indication and selection of patients to cochlear implant,” International Journal of Otolaryngology, vol. 2011, Article ID 573968, 13 pages, 2011. View at Publisher · View at Google Scholar
  4. W. K. Gstoettner, P. van de Heyning, A. Fitzgerald O'Connor et al., “Electric acoustic stimulation of the auditory system: results of a multi-centre investigation,” Acta Oto-Laryngologica, vol. 128, no. 9, pp. 968–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Tharpe and D. P. Sladen, “Causation of permanent unilateral and mild bilateral hearing loss in children,” Trends in Amplification, vol. 12, no. 1, pp. 17–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. N. Talbot and D. E. Hartley, “Combined electro-acoustic stimulation: a beneficial union?” Clinical Otolaryngology, vol. 33, no. 6, pp. 536–545, 2008. View at Google Scholar
  7. M. F. Dorman and R. H. Gifford, “Combining acoustic and electric stimulation in the service of speech recognition,” International Journal of Audiology, vol. 49, no. 12, pp. 912–919, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. B. J. Gantz, C. Turner, K. E. Gfeller, and M. W. Lowder, “Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing,” The Laryngoscope, vol. 115, no. 5, pp. 796–802, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Gstoettner, J. Kiefer, W.-D. Baumgartner, S. Pok, S. Peters, and O. Adunka, “Hearing preservation in cochlear implantation for electric acoustic stimulation,” Acta Oto-Laryngologica, vol. 124, no. 4, pp. 348–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. P. V. Incerti, T. Y. C. Ching, and R. Cowan, “A systematic review of electric-acoustic stimulation: device fitting ranges, outcomes, and clinical fitting practices,” Trends in Amplification, vol. 17, no. 1, pp. 3–26, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. C. C. Dunn, A. Perreau, B. Gantz, and R. S. Tyler, “Benefits of localization and speech perception with multiple noise sources in listeners with a short-electrode cochlear implant,” Journal of the American Academy of Audiology, vol. 21, no. 1, pp. 44–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y.-Y. Kong, G. S. Stickney, and F.-G. Zeng, “Speech and melody recognition in binaurally combined acoustic and electric hearing,” Journal of the Acoustical Society of America, vol. 117, no. 3, pp. 1351–1361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Skarzynski, A. Lorens, M. Matusiak, M. Porowski, P. H. Skarzynski, and C. J. James, “Partial deafness treatment with the nucleus straight research array cochlear implant,” Audiology and Neurotology, vol. 17, no. 2, pp. 82–91, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. C. W. Turner, B. J. Gantz, C. Vidal, A. Behrens, and B. A. Henry, “Speech recognition in noise for cochlear implant listeners: benefits of residual acoustic hearing,” Journal of the Acoustical Society of America, vol. 115, no. 4, pp. 1729–1735, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. K. E. Gfeller, C. Olszewski, C. Turner, B. Gantz, and J. Oleson, “Music perception with cochlear implants and residual hearing,” Audiology & Neurotology, vol. 11, supplement 1, pp. 12–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. W. Turner and B. J. Gantz, “Combining acoustic and electric hearing,” in Auditory Prostheses: New Insights, F. G. Zeng, A. N. Popper, and R. R. Fay, Eds., pp. 59–84, Springer, New York, NY, USA, 2012. View at Google Scholar
  17. S. Irving, A. K. Wise, R. E. Millard, R. K. Shepherd, and J. B. Fallon, “A partial hearing animal model for chronic electro-acoustic stimulation,” Journal of Neural Engineering, vol. 11, no. 4, Article ID 046008, 2014. View at Google Scholar
  18. W. K. Gstoettner, S. Heibig, N. Maier, J. Kiefer, A. Radeloff, and O. F. Adunka, “Ipsilateral electric acoustic stimulation of the auditory system: results of long-term hearing preservation,” Audiology and Neurotology, vol. 11, no. 1, pp. 49–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. C. W. Turner, L. A. J. Reiss, and B. J. Gantz, “Combined acoustic and electric hearing: preserving residual acoustic hearing,” Hearing Research, vol. 242, no. 1-2, pp. 164–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Ernfors, M. L. I. Duan, W. M. Elshamy, and B. Canlon, “Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3,” Nature Medicine, vol. 2, no. 4, pp. 463–467, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Staecker, R. Kopke, B. Malgrange, P. Lefebvre, and T. R. Van De Water, “NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells,” NeuroReport, vol. 7, no. 4, pp. 889–894, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. L. N. Gillespie, G. M. Clark, P. F. Bartlett, and P. L. Marzella, “BDNF-induced survival of auditory neurons in vivo: cessation of treatment leads to accelerated loss of survival effects,” Journal of Neuroscience Research, vol. 71, no. 6, pp. 785–790, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. H. Agterberg, H. Versnel, L. M. van Dijk, J. C. M. J. de Groot, and S. F. L. Klis, “Enhanced survival of spiral ganglion cells after cessation of treatment with brain-derived neurotrophic factor in deafened guinea pigs,” Journal of the Association for Research in Otolaryngology, vol. 10, no. 3, pp. 355–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. H. C. Stronks, H. Versnel, V. F. Prijs, and S. F. L. Klis, “Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig,” Hearing Research, vol. 259, no. 1-2, pp. 64–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Von Ilberg, J. Kiefer, J. Tillein et al., “Electric-acoustic stimulation of the auditory system,” ORL, vol. 61, no. 6, pp. 334–340, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. C. A. Von Ilberg, U. Baumann, J. Kiefer, J. Tillein, and O. F. Adunka, “Electric-acoustic stimulation of the auditory system: a review of the first decade,” Audiology and Neurotology, vol. 16, no. 2, pp. 1–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. E. C. Moxon, Neural and Mechanical Responses to Electric Stimulation of the Cat's Inner Ear, Department of Electrical Engineering, Massachusetts Institute of Technology, Boston, Mass, USA, 1971.
  28. K. V. Nourski, P. J. Abbas, C. A. Miller, B. K. Robinson, and F.-C. Jeng, “Acoustic-electric interactions in the guinea pig auditory nerve: simultaneous and forward masking of the electrically evoked compound action potential,” Hearing Research, vol. 232, no. 1-2, pp. 87–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. V. Nourski, P. J. Abbas, C. A. Miller, B. K. Robinson, and F.-C. Jeng, “Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains,” Hearing Research, vol. 202, no. 1-2, pp. 141–153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Miller, P. J. Abbas, B. K. Robinson, K. V. Nourski, F. Zhang, and F.-C. Jeng, “Auditory nerve fiber responses to combined acoustic and electric stimulation,” Journal of the Association for Research in Otolaryngology, vol. 10, no. 3, pp. 425–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. G. V. Békésy, Experiments in Hearing, E. G. Wever, Editor, McGraw-Hill, New York, NY, USA, 1960.
  32. M. A. Ruggero and N. C. Rich, “Timing of spike initiation in cochlear afferents: dependence on site of innervation,” Journal of Neurophysiology, vol. 58, no. 2, pp. 379–403, 1987. View at Google Scholar · View at Scopus
  33. M. W. Skinner, G. M. Clark, L. A. Whitford et al., “Evaluation of a new spectral peak coding strategy for the nucleus 22 channel cochlear implant system,” American Journal of Otology, vol. 15, supplement 2, pp. 15–27, 1994. View at Google Scholar · View at Scopus
  34. K. I. McAnally and G. M. Clark, “Stimulation of residual hearing in the cat by pulsatile electrical stimulation of the cochlea,” Acta Oto-Laryngologica, vol. 114, no. 4, pp. 366–372, 1994. View at Google Scholar · View at Scopus
  35. C. A. Miller, P. J. Abbas, B. K. Robinson, K. V. Nourski, F. Zhang, and F.-C. Jeng, “Electrical excitation of the acoustically sensitive auditory nerve: single-fiber responses to electric pulse trains,” Journal of the Association for Research in Otolaryngology, vol. 7, no. 3, pp. 195–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. H. C. Stronks, H. Versnel, V. F. Prijs, J. C. M. J. de Groot, W. Grolman, and S. F. L. Klis, “The role of electrophonics in electroacoustic stimulation of the guinea pig cochlea,” Otology and Neurotology, vol. 34, no. 3, pp. 579–587, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Hu, P. J. Abbas, C. A. Miller et al., “Auditory response to intracochlear electric stimuli following furosemide treatment,” Hearing Research, vol. 185, no. 1-2, pp. 77–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. H. C. Stronks, H. Versnel, V. F. Prijs, W. Grolman, and S. F. L. Klis, “Effects of electrical stimulation on the acoustically evoked auditory-nerve response in guinea pigs with a high-frequency hearing loss,” Hearing Research, vol. 272, no. 1-2, pp. 95–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. B. U. Seeber, U. Baumann, and H. Fastl, “Localization ability with bimodal hearing aids and bilateral cochlear implants,” Journal of the Acoustical Society of America, vol. 116, no. 3, pp. 1698–1709, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Vollmer, R. Hartmann, and J. Tillein, “Neuronal responses in cat inferior colliculus to combined acoustic and electric stimulation,” Advances in Oto-Rhino-Laryngology, vol. 67, pp. 61–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. L. A. Reiss, C. W. Turner, S. A. Karsten, and B. J. Gantz, “Plasticity in human pitch perception induced by tonotopically mismatched electro-acoustic stimulation,” Neuroscience, vol. 256, pp. 43–52, 2014. View at Google Scholar
  42. J. B. Fallon, R. K. Shepherd, M. Brown, and D. R. F. Irvine, “Effects of neonatal partial deafness and chronic intracochlear electrical stimulation on auditory and electrical response characteristics in primary auditory cortex,” Hearing Research, vol. 257, no. 1-2, pp. 93–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. O. Handzel, B. J. Burgess, and J. B. Nadol Jr., “Histopathology of the peripheral vestibular system after cochlear implantation in the human,” Otology and Neurotology, vol. 27, no. 1, pp. 57–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Lee, J. B. Nadol Jr., and D. K. Eddington, “Depth of electrode insertion and postoperative performance in humans with cochlear implants: a histopathologic study,” Audiology & Neurotology, vol. 15, no. 5, pp. 323–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. B. Nadol Jr., B. J. Burgess, B. J. Gantz et al., “Histopathology of cochlear implants in humans,” Annals of Otology, Rhinology and Laryngology, vol. 110, no. 9, pp. 883–891, 2001. View at Google Scholar · View at Scopus
  46. R. K. Shepherd, G. M. Clark, R. C. Black, and J. F. Patrick, “The histopathological effects of chronic electrical stimulation of the cat cochlea,” The Journal of Laryngology and Otology, vol. 97, no. 4, pp. 333–341, 1983. View at Google Scholar · View at Scopus
  47. R. L. Webb, G. M. Clark, R. K. Shepherd, B. K.-H. Franz, and B. C. Pyman, “The biologic safety of the cochlear corporation multiple-electrode intracochlear implant,” The American Journal of Otology, vol. 9, no. 1, pp. 8–13, 1988. View at Google Scholar · View at Scopus
  48. B. J. Gantz and C. Turner, “Combining acoustic and electrical speech processing: iowa/nucleus hybrid implant,” Acta Oto-Laryngologica, vol. 124, no. 4, pp. 344–347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Kiefer, W. Gstoettner, W. Baumgartner et al., “Conservation of low-frequency hearing in cochlear implantation,” Acta Oto-Laryngologica, vol. 124, no. 3, pp. 272–280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. A. V. Hodges, J. Schloffman, and T. Balkany, “Conservation of residual hearing with cochlear implantation,” The American Journal of Otology, vol. 18, no. 2, pp. 179–183, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. C. James, K. Albegger, R. Battmer et al., “Preservation of residual hearing with cochlear implantation: how and why,” Acta Oto-Laryngologica, vol. 125, no. 5, pp. 481–491, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. E. A. Woodson, L. A. J. Reiss, C. W. Turner, K. Gfeller, and B. J. Gantz, “The hybrid cochlear implant: a review,” Advances in Oto-Rhino-Laryngology, vol. 67, pp. 125–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. R. J. S. Briggs, M. Tykocinski, J. Xu et al., “Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode,” Audiology and Neurotology, vol. 11, supplement 1, pp. 42–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. M. B. Fitzgerald, E. Sagi, M. Jackson et al., “Reimplantation of hybrid cochlear implant users with a full-length electrode after loss of residual hearing,” Otology & Neurotology, vol. 29, no. 2, pp. 168–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. M. L. Carlson, C. L. Driscoll, R. H. Gifford et al., “Implications of minimizing trauma during conventional cochlear implantation,” Otology & Neurotology, vol. 32, no. 6, pp. 962–968, 2011. View at Google Scholar
  56. P. J. Boyd, “Potential benefits from deeply inserted cochlear implant electrodes,” Ear and Hearing, vol. 32, no. 4, pp. 411–427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Lehnhardt, “Intracochlear placement of cochlear implant electrodes in soft surgery technique,” HNO, vol. 41, no. 7, pp. 356–359, 1993. View at Google Scholar
  58. B. Fraysse, Á. R. Macías, O. Sterkers et al., “Residual hearing conservation and electroacoustic stimulation with the nucleus 24 contour advance cochlear implant,” Otology & Neurotology, vol. 27, no. 5, pp. 624–633, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. O. Adunka, M. H. Unkelbach, M. Mack, M. Hambek, W. Gstoettner, and J. Kiefer, “Cochlear implantation via the round window membrane minimizes trauma to cochlear structures: a histologically controlled insertion study,” Acta Oto-Laryngologica, vol. 124, no. 7, pp. 807–812, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. P. S. Roland and C. G. Wright, “Surgical aspects of cochlear implantation: mechanisms of insertional trauma,” Advances in Oto-Rhino-Laryngology, vol. 64, pp. 11–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Skarzynski, A. Lorens, A. Piotrowska, and I. Anderson, “Preservation of low frequency hearing in partial deafness cochlear implantation (PDCI) using the round window surgical approach,” Acta Oto-Laryngologica, vol. 127, no. 1, pp. 41–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. N. L. Cohen, “Cochlear implant soft surgery: fact or fantasy?” Otolaryngology—Head and Neck Surgery, vol. 117, no. 3, pp. 214–216, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Lee and K. Asare, “Therapeutic hypothermia for out-of-hospital cardiac arrest,” The American Journal of Health-System Pharmacy, vol. 67, no. 15, pp. 1229–1237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Hägerdal, J. Harp, L. Nilsson, and B. K. Siesjö, “The effect of induced hypothermia upon oxygen consumption in the rat brain,” Journal of Neurochemistry, vol. 24, no. 2, pp. 311–316, 1975. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Mitani, F. Kadoya, and K. Kataoka, “Temperature dependence of hypoxia-induced calcium accumulation in gerbil hippocampal slices,” Brain Research, vol. 562, no. 1, pp. 159–163, 1991. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Kader, V. I. Frazzini, C. J. Baker, R. A. Solomon, R. R. Trifiletti, and W. Young, “Effect of mild hypothermia on nitric oxide synthesis during focal cerebral ischemia,” Neurosurgery, vol. 35, no. 2, pp. 272–277, 1994. View at Google Scholar · View at Scopus
  67. S. Takeda, N. Hakuba, T. Yoshida et al., “Postischemic mild hypothermia alleviates hearing loss because of transient ischemia,” NeuroReport, vol. 19, no. 13, pp. 1325–1328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. K. R. Henry, “Hyperthermia exacerbates and hypothermia protects from noise-induced threshold elevation of the cochlear nerve envelope response in the C57BL/6J mouse,” Hearing Research, vol. 179, no. 1-2, pp. 88–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. T. J. Balkany, A. A. Eshraghi, H. Jiao et al., “Mild hypothermia protects auditory function during cochlear implant surgery,” The Laryngoscope, vol. 115, no. 9, pp. 1543–1547, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Watanabe, K. Koga, N. Hakuba, and K. Gyo, “Hypothermia prevents hearing loss and progressive hair cell loss after transient cochlear ischemia in gerbils,” Neuroscience, vol. 102, no. 3, pp. 639–645, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. K. R. Henry and R. A. Chole, “Hypothermia protects the cochlea from noise damage,” Hearing Research, vol. 16, no. 3, pp. 225–230, 1984. View at Publisher · View at Google Scholar · View at Scopus
  72. C.-J. Chen, Y.-C. Ou, C.-Y. Chang et al., “Glutamate released by Japanese encephalitis virus-infected microglia involves TNF-α signaling and contributes to neuronal death,” GLIA, vol. 60, no. 3, pp. 487–501, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. P. P. Lefebvre, B. Malgrange, F. Lallemend, H. Staecker, G. Moonen, and T. R. van de Water, “Mechanisms of cell death in the injured auditory system: otoprotective strategies,” Audiology and Neuro-Otology, vol. 7, no. 3, pp. 165–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Huang, A. G. Cheng, H. Stupak et al., “Oxidative stress-induced apoptosis of cochlear sensory cells: otoprotective strategies,” International Journal of Developmental Neuroscience, vol. 18, no. 2-3, pp. 259–270, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. J. N. Fayad, A. O. Makarem, and F. H. Linthicum Jr., “Histopathologic assessment of fibrosis and new bone formation in implanted human temporal bones using 3D reconstruction,” Otolaryngology—Head and Neck Surgery, vol. 141, no. 2, pp. 247–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. J. B. Nadol Jr., D. K. Eddington, and B. J. Burgess, “Foreign body or hypersensitivity granuloma of the inner ear after cochlear implantation: one possible cause of a soft failure?” Otology & Neurotology, vol. 29, no. 8, pp. 1076–1084, 2008. View at Google Scholar · View at Scopus
  77. F. M. Rizer, P. N. Arkis, W. H. Lippy, and A. G. Schuring, “A postoperative audiometric evaluation of cochlear implant patients,” Otolaryngology—Head and Neck Surgery, vol. 98, no. 3, pp. 203–206, 1988. View at Google Scholar · View at Scopus
  78. W. J. Boggess, J. E. Baker, and T. J. Balkany, “Loss of residual hearing after cochlear implantation,” The Laryngoscope, vol. 99, no. 10, part 1, pp. 1002–1005, 1989. View at Google Scholar · View at Scopus
  79. J. B. Nadol Jr. and D. K. Eddington, “Histopathology of the inner ear relevant to cochlear implantation,” Advances in Oto-Rhino-Laryngology, vol. 64, pp. 31–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. R. F. Canalis, R. Gussen, E. Abemayor, and J. Andrews, “Surgical trauma to the lateral semicircular canal with preservation of hearing,” Laryngoscope, vol. 97, no. 5, pp. 575–581, 1987. View at Google Scholar · View at Scopus
  81. E. E. Smouha, “Surgery of the inner ear with hearing preservation: serial histological changes,” The Laryngoscope, vol. 113, no. 9, pp. 1439–1449, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. M. A. Somdas, P. M. M. C. Li, D. M. Whiten, D. K. Eddington, and J. B. Nadol Jr., “Quantitative evaluation of new bone and fibrous tissue in the cochlea following cochlear implantation in the human,” Audiology and Neurotology, vol. 12, no. 5, pp. 277–284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. C.-H. Choi and J. S. Oghalai, “Predicting the effect of post-implant cochlear fibrosis on residual hearing,” Hearing Research, vol. 205, no. 1-2, pp. 193–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. F. J. Cervera-Paz and F. H. Linthicum Jr., “Cochlear wall erosion after cochlear implantation,” Annals of Otology, Rhinology and Laryngology, vol. 114, no. 7, pp. 543–546, 2005. View at Google Scholar · View at Scopus
  85. L. N. Gillespie, G. M. Clark, and P. L. Marzella, “Delayed neurotrophin treatment supports auditory neuron survival in deaf guinea pigs,” NeuroReport, vol. 15, no. 7, pp. 1121–1125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. L. N. Gillespie, M. P. Zanin, and R. K. Shepherd, Cell-Based Neurotrophin Delivery for Auditory Neuron Survival in Deafness, Australian Neuroscience Society, Melbourne, Australia, 2013.
  87. L. N. Pettingill, A. K. Wise, M. S. Geaney, and R. K. Shepherd, “Enhanced auditory neuron survival following cell-based bdnf treatment in the deaf guinea pig,” PLoS ONE, vol. 6, no. 4, Article ID e18733, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. A. K. Wise, J. B. Fallon, A. J. Neil et al., “Combining cell-based therapies and neural prostheses to promote neural survival,” Neurotherapeutics, vol. 8, no. 4, pp. 774–787, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. A. K. Wise, R. Richardson, J. Hardman, G. Clark, and S. O'Leary, “Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3,” The Journal of Comparative Neurology, vol. 487, no. 2, pp. 147–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. F. Noushi, R. T. Richardson, J. Hardman, G. Clark, and S. O'Leary, “Delivery of neurotrophin-3 to the cochlea using alginate beads,” Otology & Neurotology, vol. 26, no. 3, pp. 528–533, 2005. View at Google Scholar
  91. J. Ito, T. Endo, T. Nakagawa, T. Kita, T.-S. Kim, and F. Iguchi, “A new method for drug application to the inner ear,” ORL, vol. 67, no. 5, pp. 272–275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Havenith, H. Versnel, M. J. H. Agterberg et al., “Spiral ganglion cell survival after round window membrane application of brain-derived neurotrophic factor using gelfoam as carrier,” Hearing Research, vol. 272, no. 1-2, pp. 168–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. L. C. Schecterson and M. Bothwell, “Neurotrophin and neurotrophin receptor mRNA expression in developing inner ear,” Hearing Research, vol. 73, no. 1, pp. 92–100, 1994. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Ylikoski, U. Pirvola, M. Moshnyakov, J. Palgi, U. Arumae, and M. Saarma, “Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear,” Hearing Research, vol. 65, no. 1-2, pp. 69–78, 1993. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Stankovic, C. Rio, A. Xia et al., “Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear,” Journal of Neuroscience, vol. 24, no. 40, pp. 8651–8661, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Zilberstein, M. C. Liberman, and G. Corfas, “Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea,” Journal of Neuroscience, vol. 32, no. 2, pp. 405–410, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. L. N. Gillespie, G. M. Clark, P. F. Bartlett, and P. L. Marzella, “BDNF-induced survival of auditory neurons in vivo: cessation of treatment leads to accelerated loss of survival effects,” Journal of Neuroscience Research, vol. 71, no. 6, pp. 785–790, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. R. K. Shepherd, A. Coco, and S. B. Epp, “Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss,” Hearing Research, vol. 242, no. 1-2, pp. 100–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. R. K. Shepherd, A. Coco, S. B. Epp, and J. M. Crook, “Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss,” Journal of Comparative Neurology, vol. 486, no. 2, pp. 145–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. A. K. Wise, C. R. Hume, B. O. Flynn et al., “Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea,” Molecular Therapy, vol. 18, no. 6, pp. 1111–1122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. A. K. Wise, R. Richardson, J. Hardman, G. Clark, and S. O'Leary, “Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3,” Journal of Comparative Neurology, vol. 487, no. 2, pp. 147–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. E. M. Keithley, C. L. Ma, A. F. Ryan, J.-C. Louis, and E. Magal, “GDNF protects the cochlea against noise damage,” NeuroReport, vol. 9, no. 10, pp. 2183–2187, 1998. View at Publisher · View at Google Scholar · View at Scopus
  103. R. Kuang, G. Hever, G. Zajic et al., “Glial cell line-derived neurotrophic factor. Potential for otoprotection,” Annals of the New York Academy of Sciences, vol. 884, pp. 270–291, 1999. View at Google Scholar · View at Scopus
  104. F. Shoji, A. L. Miller, A. Mitchell, T. Yamasoba, R. A. Altschuler, and J. M. Miller, “Differential protective effects of neurotrophins in the attenuation of noise-induced hair cell loss,” Hearing Research, vol. 146, no. 1-2, pp. 134–142, 2000. View at Publisher · View at Google Scholar · View at Scopus
  105. S.-Q. Zhai, J.-C. Cheng, J.-L. Wang, W.-Y. Yang, R. Gu, and S.-C. Jiang, “Protective effect of basic fibroblast growth factor on auditory hair cells after noise exposure,” Acta Oto-Laryngologica, vol. 122, no. 4, pp. 370–373, 2002. View at Publisher · View at Google Scholar · View at Scopus
  106. S.-Q. Zhai, D.-J. Wang, J.-L. Wang, D.-Y. Han, and W.-Y. Yang, “Basic fibroblast growth factor protects auditory neurons and hair cells from glutamate neurotoxicity and noise exposure,” Acta Oto-Laryngologica, vol. 124, no. 2, pp. 124–129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. D. J. Sly, A. J. Hampson, R. L. Minter et al., “Brain-derived neurotrophic factor modulates auditory function in the hearing cochlea,” Journal of the Association for Research in Otolaryngology, vol. 13, no. 1, pp. 1–16, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Kanzaki, T. Stöver, K. Kawamoto et al., “Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation,” Journal of Comparative Neurology, vol. 454, no. 3, pp. 350–360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. D. R. Trune and B. Canlon, “Corticosteroid therapy for hearing and balance disorders,” Anatomical Record, vol. 295, no. 11, pp. 1928–1943, 2012. View at Publisher · View at Google Scholar · View at Scopus
  110. P. A. Bird, E. J. Begg, M. Zhang, A. T. Keast, D. P. Murray, and T. J. Balkany, “Intratympanic versus intravenous delivery of methylprednisolone to cochlear perilymph,” Otology and Neurotology, vol. 28, no. 8, pp. 1124–1130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. P. A. Bird, D. P. Murray, M. Zhang, and E. J. Begg, “Intratympanic versus intravenous delivery of dexamethasone and dexamethasone sodium phosphate to cochlear perilymph,” Otology & Neurotology, vol. 32, no. 6, pp. 933–936, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. S. S. Chandrasekhar, R. Y. Rubinstein, J. A. Kwartler et al., “Dexamethasone pharmacokinetics in the inner ear: comparison of route of administration and use of facilitating agents,” Otolaryngology: Head and Neck Surgery, vol. 122, no. 4, pp. 521–528, 2000. View at Google Scholar · View at Scopus
  113. R. J. Vivero, D. E. Joseph, S. Angeli et al., “Dexamethasone base conserves hearing from electrode trauma-induced hearing loss,” Laryngoscope, vol. 118, no. 11, pp. 2028–2035, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. T. Rhen and J. A. Cidlowski, “Antiinflammatory action of glucocorticoids—new mechanisms for old drugs,” New England Journal of Medicine, vol. 353, no. 16, pp. 1658–1723, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Chang, H. Eastwood, D. Sly, D. James, R. Richardson, and S. O'Leary, “Factors influencing the efficacy of round window dexamethasone protection of residual hearing post-cochlear implant surgery,” Hearing Research, vol. 255, no. 1-2, pp. 67–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. D. P. James, H. Eastwood, R. T. Richardson, and S. J. O'Leary, “Effects of round window dexamethasone on residual hearing in a guinea pig model of cochlear implantation,” Audiology and Neurotology, vol. 13, no. 2, pp. 86–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Maini, H. Lisnichuk, H. Eastwood et al., “Targeted therapy of the inner ear,” Audiology and Neurotology, vol. 14, no. 6, pp. 402–410, 2009. View at Publisher · View at Google Scholar
  118. G. P. Rajan, J. Kuthubutheen, N. Hedne, and J. Krishnaswamy, “The role of preoperative, intratympanic glucocorticoids for hearing preservation in cochlear implantation: a prospective clinical study,” Laryngoscope, vol. 122, no. 1, pp. 190–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. E. Dolgin, “Sound medicine,” Nature Medicine, vol. 18, no. 5, pp. 642–645, 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. J. Schacht, A. E. Talaska, and L. P. Rybak, “Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention,” Anatomical Record, vol. 295, no. 11, pp. 1837–1850, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. D. Henderson, E. C. Bielefeld, K. C. Harris, and B. H. Hu, “The role of oxidative stress in noise-induced hearing loss,” Ear and Hearing, vol. 27, no. 1, pp. 1–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. H. Eastwood, D. Pinder, D. James et al., “Permanent and transient effects of locally delivered n-acetyl cysteine in a guinea pig model of cochlear implantation,” Hearing Research, vol. 259, no. 1-2, pp. 24–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. T. Erdem, T. Bayindir, A. Filiz, M. Iraz, and E. Selimoglu, “The effect of resveratrol on the prevention of cisplatin ototoxicity,” European Archives of Oto-Rhino-Laryngology, vol. 269, no. 10, pp. 2185–2188, 2012. View at Publisher · View at Google Scholar · View at Scopus
  124. K. Kawamoto, S.-H. Sha, R. Minoda et al., “Antioxidant gene therapy can protect hearing and hair cells from ototoxicity,” Molecular Therapy, vol. 9, no. 2, pp. 173–181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. T. Yamasoba, A. L. Nuttall, C. Harris, Y. Raphael, and J. M. Miller, “Role of glutathione in protection against noise-induced hearing loss,” Brain Research, vol. 784, no. 1-2, pp. 82–90, 1998. View at Publisher · View at Google Scholar · View at Scopus
  126. A. C. Yumusakhuylu, M. Yazici, M. Sari et al., “Protective role of resveratrol against cisplatin induced ototoxicity in guinea pigs,” International Journal of Pediatric Otorhinolaryngology, vol. 76, no. 3, pp. 404–408, 2012. View at Publisher · View at Google Scholar · View at Scopus
  127. S.-H. Sha, G. Zajic, C. J. Epstein, and J. Schacht, “Overexpression of copper/zinc-superoxide dismutase protects from kanamycin-induced hearing loss,” Audiology and Neuro-Otology, vol. 6, no. 3, pp. 117–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Chang, H. H. Jung, J. Y. Yang et al., “Protective effect of metformin against cisplatin-induced ototoxicity in an auditory cell line,” Journal of the Association for Research in Otolaryngology, vol. 15, no. 2, pp. 149–158, 2014. View at Publisher · View at Google Scholar
  129. G. Polony, V. Humli, R. Andó et al., “Protective effect of rasagiline in aminoglycoside ototoxicity,” Neuroscience, vol. 265, pp. 263–273, 2014. View at Google Scholar
  130. A. A. Eshraghi, J. Wang, E. Adil et al., “Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity,” Hearing Research, vol. 226, no. 1-2, pp. 168–177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. J. I. Matsui, J. M. Ogilvie, and M. E. Warchol, “Inhibition of caspases prevents ototoxic and ongoing hair cell death,” Journal of Neuroscience, vol. 22, no. 4, pp. 1218–1227, 2002. View at Google Scholar · View at Scopus
  132. L. A. May, I. I. Kramarenko, C. S. Brandon et al., “Inner ear supporting cells protect hair cells by secreting HSP70,” Journal of Clinical Investigation, vol. 123, no. 8, pp. 3577–3587, 2013. View at Publisher · View at Google Scholar · View at Scopus
  133. R. Gabaizadeh, H. Staecker, W. Liu et al., “Protection of both auditory hair cells and auditory neurons from cisplatin induced damage,” Acta Oto-Laryngologica, vol. 117, no. 2, pp. 232–238, 1997. View at Google Scholar · View at Scopus
  134. J. Maruyama, J. M. Miller, and M. Ulfendahl, “Glial cell line-derived neurotrophic factor and antioxidants preserve the electrical responsiveness of the spiral ganglion neurons after experimentally induced deafness,” Neurobiology of Disease, vol. 29, no. 1, pp. 14–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. S. J. M. Skinner, M. S. Geaney, H. Lin et al., “Encapsulated living choroid plexus cells: potential long-term treatments for central nervous system disease and trauma,” Journal of Neural Engineering, vol. 6, no. 6, Article ID 065001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. H. Staecker, R. Gabaizadeh, H. Federoff, and T. R. Van de Water, “Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair ceil loss,” Otolaryngology—Head and Neck Surgery, vol. 119, no. 1, pp. 7–13, 1998. View at Publisher · View at Google Scholar · View at Scopus
  137. T. Nakaizumi, K. Kawamoto, R. Minoda, and Y. Raphael, “Adenovirus-mediated expression of brain-derived neurotrophic factor protects spiral ganglion neurons from ototoxic damage,” Audiology and Neuro-Otology, vol. 9, no. 3, pp. 135–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. S. B. Shibata, S. R. Cortez, L. A. Beyer et al., “Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae,” Experimental Neurology, vol. 223, no. 2, pp. 464–472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Yagi, S. Kanzaki, K. Kawamoto et al., “Spiral ganglion neurons are protected from degeneration by GDNF gene therapy,” Journal of the Association for Research in Otolaryngology, vol. 1, no. 4, pp. 315–325, 2000. View at Google Scholar · View at Scopus
  140. P. J. Atkinson, A. K. Wise, B. O. Flynn et al., “Neurotrophin gene therapy for sustained neural preservation after deafness,” PLoS ONE, vol. 7, no. 12, Article ID e52338, 2012. View at Publisher · View at Google Scholar · View at Scopus
  141. H. Fukui, H. T. Wong, L. A. Beyer et al., “BDNF gene therapy induces auditory nerve survival and fiber sprouting in deaf Pou4f3 mutant mice,” Scientific Reports, vol. 2, article 838, 2012. View at Publisher · View at Google Scholar · View at Scopus
  142. J. A. Chikar, D. J. Colesa, D. L. Swiderski, A. D. Polo, Y. Raphael, and B. E. Pfingst, “Over-expression of BDNF by adenovirus with concurrent electrical stimulation improves cochlear implant thresholds and survival of auditory neurons,” Hearing Research, vol. 245, no. 1-2, pp. 24–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. P. J. Atkinson, A. K. Wise, B. O. Flynn, B. A. Nayagam, and R. T. Richardson, “Viability of long-term gene therapy in the cochlea,” Scientific Reports, vol. 4, article 4733, 2014. View at Google Scholar
  144. S. Q. Zhai, W. Guo, Y. Y. Hu et al., “Protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion,” The Journal of Laryngology & Otology, vol. 125, no. 5, pp. 449–454, 2010. View at Google Scholar
  145. H. Staecker, D. Li, B. W. O'Malley, and T. R. van de Water, “Gene expression in the mammalian cochlea: a study of multiple vector systems,” Acta Oto-Laryngologica, vol. 121, no. 2, pp. 157–163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  146. M. L. Derby, M. Sena-Esteves, X. O. Breakefield, and D. P. Corey, “Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors,” Hearing Research, vol. 134, no. 1-2, pp. 1–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  147. A. K. Lalwani, B. J. Walsh, P. G. Reilly, N. Muzyczka, and A. N. Mhatre, “Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig,” Gene Therapy, vol. 3, no. 7, pp. 588–592, 1996. View at Google Scholar · View at Scopus
  148. M. A. Weiss, J. C. Frisancho, B. J. Roessler, and Y. Raphael, “Viral-mediated gene transfer in the cochlea,” International Journal of Developmental Neuroscience, vol. 15, no. 4-5, pp. 577–583, 1997. View at Publisher · View at Google Scholar · View at Scopus
  149. A. M. Sheffield, S. P. Gubbels, M. S. Hildebrand et al., “Viral vector tropism for supporting cells in the developing murine cochlea,” Hearing Research, vol. 277, no. 1-2, pp. 28–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. E. Ballana, J. Wang, F. Venail et al., “Efficient and specific transduction of cochlear supporting cells by adeno-associated virus serotype 5,” Neuroscience Letters, vol. 442, no. 2, pp. 134–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. Y. Liu, T. Okada, K. Sheykholeslami et al., “Specific and efficient transduction of cochlear inner hair cells with recombinant adeno-associated virus type 3 vector,” Molecular Therapy, vol. 12, no. 4, pp. 725–733, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. R. H. Lachmann and S. Efstathiou, “Use of herpes simplex virus type 1 for transgene expression within the nervous system,” Clinical Science, vol. 96, no. 6, pp. 533–541, 1999. View at Publisher · View at Google Scholar · View at Scopus
  153. B. Boëda, D. Weil, and C. Petit, “A specific promoter of the sensory cells of the inner ear defined by transgenesis,” Human Molecular Genetics, vol. 10, no. 15, pp. 1581–1589, 2001. View at Publisher · View at Google Scholar · View at Scopus
  154. M. Li Duan, T. Bordet, M. Mezzina, A. Kahn, and M. Ulfendahl, “Adenoviral and adeno-associated viral vector mediated gene transfer in the guinea pig cochlea,” NeuroReport, vol. 13, no. 10, pp. 1295–1299, 2002. View at Publisher · View at Google Scholar · View at Scopus
  155. Y. Raphael, J. C. Frisancho, and B. J. Roessler, “Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo,” Neuroscience Letters, vol. 207, no. 2, pp. 137–141, 1996. View at Publisher · View at Google Scholar · View at Scopus
  156. S. B. Shibata, G. Di Pasquale, S. R. Cortez, J. A. Chiorini, and Y. Raphael, “Gene transfer using bovine adeno-associated virus in the guinea pig cochlea,” Gene Therapy, vol. 16, no. 8, pp. 990–997, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. S.-I. Ishimoto, K. Kawamoto, S. Kanzaki, and Y. Raphael, “Gene transfer into supporting cells of the organ of Corti,” Hearing Research, vol. 173, no. 1-2, pp. 187–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  158. S. T. Kho, R. M. Pettis, A. N. Mhatre, and A. K. Lalwani, “Safety of adeno-associated virus as cochlear gene transfer vector: analysis of distant spread beyond injected cochleae,” Molecular Therapy, vol. 2, no. 4, pp. 368–373, 2000. View at Publisher · View at Google Scholar · View at Scopus
  159. T. Stöver, M. Yagi, and Y. Raphael, “Transduction of the contralateral ear after adenovirus-mediated cochlear gene transfer,” Gene Therapy, vol. 7, no. 5, pp. 377–383, 2000. View at Publisher · View at Google Scholar · View at Scopus
  160. A. K. Lalwani, B. J. Walsh, G. J. Carvalho, N. Muzyczka, and A. N. Mhatre, “Expression of adeno-associated virus integrated transgene within the mammalian vestibular organs,” The American Journal of Otology, vol. 19, no. 3, pp. 390–395, 1998. View at Google Scholar · View at Scopus
  161. K. Kawamoto, S.-H. Oh, S. Kanzaki, N. Brown, and Y. Raphael, “The functional and structural outcome of inner ear gene transfer via the vestibular and cochlear fluids in mice,” Molecular Therapy, vol. 4, no. 6, pp. 575–585, 2001. View at Publisher · View at Google Scholar · View at Scopus
  162. D. Mukherjea, S. Jajoo, T. Kaur, K. E. Sheehan, V. Ramkumar, and L. P. Rybak, “Transtympanic administration of short interfering (si)rna for the nox3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat,” Antioxidants & Redox Signaling, vol. 13, no. 5, pp. 589–598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. S. B. Shibata, S. R. Cortez, J. A. Wiler, D. L. Swiderski, and Y. Raphael, “Hyaluronic acid enhances gene delivery into the cochlea,” Human Gene Therapy, vol. 23, no. 3, pp. 302–310, 2012. View at Publisher · View at Google Scholar · View at Scopus
  164. P. A. LeWitt, A. R. Rezai, M. A. Leehey et al., “AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial,” The Lancet Neurology, vol. 10, no. 4, pp. 309–319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. M. G. Kaplitt, A. Feigin, C. Tang et al., “Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial,” The Lancet, vol. 369, no. 9579, pp. 2097–2105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  166. J. W. B. Bainbridge, A. J. Smith, S. S. Barker et al., “Effect of gene therapy on visual function in Leber's congenital amaurosis,” The New England Journal of Medicine, vol. 358, no. 21, pp. 2231–2239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. P. Hadaczek, J. L. Eberling, P. Pivirotto, J. Bringas, J. Forsayeth, and K. S. Bankiewicz, “Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC,” Molecular Therapy, vol. 18, no. 8, pp. 1458–1461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. A. C. Nathwani, E. G. D. Tuddenham, S. Rangarajan et al., “Adenovirus-associated virus vector-mediated gene transfer in hemophilia B,” The New England Journal of Medicine, vol. 365, no. 25, pp. 2357–2365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. J. R. Holt, D. C. Johns, S. Wang et al., “Functional expression of exogenous proteins in mammalian sensory hair cells infected with adenoviral vectors,” Journal of Neurophysiology, vol. 81, no. 4, pp. 1881–1888, 1999. View at Google Scholar · View at Scopus
  170. A. E. Luebke, J. D. Steiger, B. L. Hodges, and A. Amalfitano, “A modified adenovirus can transfect cochlear hair cells in vivo without compromising cochlear function,” Gene Therapy, vol. 8, no. 10, pp. 789–794, 2001. View at Publisher · View at Google Scholar · View at Scopus
  171. S. L. Ginn, I. E. Alexander, M. L. Edelstein, M. R. Abedi, and J. Wixon, “Gene therapy clinical trials worldwide to 2012—an update,” Journal of Gene Medicine, vol. 15, no. 2, pp. 65–77, 2013. View at Publisher · View at Google Scholar · View at Scopus
  172. J. L. Pinyon, S. F. Tadros, K. E. Froud et al., “Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear,” Science Translational Medicine, vol. 6, no. 233, p. 233ra54, 2014. View at Google Scholar
  173. R. K. Shepherd and A. K. Wise, “Gene therapy boosts the bionic ear,” Science Translational Medicine, vol. 6, no. 233, p. 233fs17, 2014. View at Google Scholar