Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 413629, 11 pages
http://dx.doi.org/10.1155/2014/413629
Research Article

Genotype-Related Effect of Crowding Stress on Blood Pressure and Vascular Function in Young Female Rats

Institute of Normal and Pathological Physiology, Centre of Excellence for Examination of Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia

Received 9 December 2013; Accepted 27 January 2014; Published 5 March 2014

Academic Editor: Vladimir V. Matchkov

Copyright © 2014 Peter Slezak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. N. B. Merz, J. Dwyer, C. K. Nordstrom, K. G. Walton, J. W. Salerno, and R. H. Schneider, “Psychosocial stress and cardiovascular disease: pathophysiological links,” Behavioral Medicine, vol. 27, no. 4, pp. 141–147, 2002. View at Google Scholar · View at Scopus
  2. M. S. Kopp and J. Réthelyi, “Where psychology meets physiology: chronic stress and premature mortality—the Central-Eastern European health paradox,” Brain Research Bulletin, vol. 62, no. 5, pp. 351–367, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Rosengren, S. Hawken, S. Ôunpuu et al., “Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study): case-control study,” The Lancet, vol. 364, no. 9438, pp. 953–962, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Steptoe, A. Rosengren, and P. Hjemdahl, “Introduction to cardiovascular disease, stress and adaptation,” in Stress and Cardiovascular Diseases, P. Hjemdahl, A. Rosengren, and A. Steptoe, Eds., pp. 1–14, Springer, 2012. View at Google Scholar
  5. M. Esler, N. Eikelis, M. Schlaich et al., “Chronic mental stress is a cause of essential hypertension: presence of biological markers of stress,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 4, pp. 498–502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Esler, “The causal role of chronic mental stress in the pathogenesis of essential hypertension,” in Stress and Cardiovascular Disease, P. Hjemdahl, A. Rosengren, and A. Steptoe, Eds., pp. 273–283, Springer, 2012. View at Google Scholar
  7. F. Sparrenberger, S. C. Fuchs, L. B. Moreira, and F. D. Fuchs, “Stressful life events and current psychological distress are associated with self-reported hypertension but not with true hypertension: results from a cross-sectional population-based study,” BMC Public Health, vol. 8, article 357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Sparrenberger, F. T. Cichelero, A. M. Ascoli et al., “Does psychosocial stress cause hypertension? A systematic review of observational studies,” Journal of Human Hypertension, vol. 23, no. 1, pp. 12–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. L. Wong, T. C. Tai, D. C. Wong-Faull et al., “Epinephrine: a short- and long-term regulator of stress and development of illness—a potential new role for epinephrine in stress,” Cellular and Molecular Neurobiology, vol. 32, no. 5, pp. 737–748, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Zicha and J. Kuneš, “Ontogenetic aspects of hypertension development: analysis in the rat,” Physiological Reviews, vol. 79, no. 4, pp. 1227–1282, 1999. View at Google Scholar · View at Scopus
  11. J. Kunes, M. Kadlecova, I. Vaneckova et al., “Critical developmental periods in the pathogenesis of hypertension,” Physiological Research, vol. 61, supplement 1, pp. S9–17, 2012. View at Google Scholar
  12. J. Kuneš and J. Zicha, “Developmental windows and environment as important factors in the expression of genetic information: a cardiovascular physiologist's view,” Clinical Science, vol. 111, no. 5, pp. 295–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Bugajski, “Social stress adapts signaling pathways involved in stimulation of the hypothalamic-pituitary-adrenal axis,” Journal of Physiology and Pharmacology, vol. 50, no. 3, pp. 367–379, 1999. View at Google Scholar · View at Scopus
  14. J. Djordjević, G. Cvijić, and V. Davidović, “Different activation of ACTH and corticosterone release in response to various stressors in rats,” Physiological Research, vol. 52, no. 1, pp. 67–72, 2003. View at Google Scholar · View at Scopus
  15. A. Puzserova, P. Slezak, P. Balis et al., “Long-term social stress induces nitric oxide-independent endothelial dysfunction in normotensive rats,” Stress, vol. 16, pp. 331–339, 2013. View at Google Scholar
  16. O. N. Bondarenko, N. A. Bondarenko, I. Y. Malyshev, and E. B. Manukhina, “Antistress effect of nitric oxide,” Biology Bulletin, vol. 28, no. 4, pp. 387–393, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Toda and M. Nakanishi-Toda, “How mental stress affects endothelial function,” Pflügers Archiv, vol. 462, no. 6, pp. 779–794, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Bernátová, A. Púzserová, J. Navarová, Z. Csizmadiová, and M. Zeman, “Crowding-induced alterations in vascular system of Wistar-Kyoto rats: role of nitric oxide,” Physiological Research, vol. 56, no. 5, pp. 667–669, 2007. View at Google Scholar · View at Scopus
  19. S. Grunfeld, C. A. Hamilton, S. Mesaros et al., “Role of superoxide in the depressed nitric oxide production by the endothelium of genetically hypertensive rats,” Hypertension, vol. 26, no. 6, pp. 854–857, 1995. View at Google Scholar · View at Scopus
  20. A. Zafir and N. Banu, “Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats,” Stress, vol. 12, no. 2, pp. 167–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Kwiecień, M. W. Pawlik, T. Brzozowski et al., “Nitric oxide (NO)-releasing aspirin and (NO) donors in protection of gastric mucosa against stress,” Journal of Physiology and Pharmacology, vol. 59, no. 2, pp. 103–115, 2008. View at Google Scholar · View at Scopus
  22. E. F. Kamper, A. Chatzigeorgiou, O. Tsimpoukidi et al., “Sex differences in oxidant/antioxidant balance under a chronic mild stress regime,” Physiology and Behavior, vol. 98, no. 1-2, pp. 215–222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Bernatova, M. Victoria Conde, J. Kopincova, M. Carmen González, A. Puzserova, and S. M. Arribas, “Endothelial dysfunction in spontaneously hypertensive rats: focus on methodological aspects,” Journal of Hypertension, vol. 27, no. 6, pp. S27–S31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Dart, X.-J. Du, and B. A. Kingwell, “Gender, sex hormones and autonomic nervous control of the cardiovascular system,” Cardiovascular Research, vol. 53, no. 3, pp. 678–687, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Semyachkina-Glushkovskaya, T. Anishchenko, S. Kapralov et al., “Sex differences in cardiovascular control by nitric oxide in normotensive and hypertensive rats,” Health, vol. 2, pp. 897–905, 2010. View at Google Scholar
  26. B. M. Kudielka and C. Kirschbaum, “Sex differences in HPA axis responses to stress: a review,” Biological Psychology, vol. 69, no. 1, pp. 113–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. G. Anishchenko, O. V. Glushkovskaya-Semyachkina, V. A. Berdnikova, and T. A. Sindyakova, “Sex-related differences in cardiovascular stress reactivity in healthy and hypertensive rats,” Bulletin of Experimental Biology and Medicine, vol. 143, no. 2, pp. 178–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Mulvany, “Procedures for investigation of small vessels using small vessel myograph,” Danish Myo Technology, 16-8-2012, 2004, http://www.dmt.dk/files/manualer/procedures_for_investigation.pdf.
  29. F. C. Munhoz, S. R. Potje, A. C. Pereira et al., “Hypotensive and vasorelaxing effects of the new NO-donor [Ru(terpy)(bdq)NO+]3+ in spontaneously hypertensive rats,” Nitric Oxide, vol. 26, no. 2, pp. 111–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. T. G. Guzik and K. M. Channon, “Measurement of vascular reactive oxygen species production by chemiluminescence,” in Hypertension: Methods and Protocols, J. P. Fennell and A. H. Baker, Eds., pp. 73–89, Springer, Humana Press, Totowa, NJ, USA, 2005. View at Google Scholar
  31. V. Regecova and E. Kellerova, “Effects of urban noise pollution on blood pressure and heart rate in preschool children,” Journal of Hypertension, vol. 13, no. 4, pp. 405–412, 1995. View at Google Scholar · View at Scopus
  32. A. L. Miller, C. Clifford, J. Sturza et al., “Blunted cortisol response to stress is associated with higher body mass index in low-income preschool-aged children,” Psychoneuroendocrinology, vol. 38, pp. 2611–2617, 2013. View at Google Scholar
  33. R. G. Kuijer and J. A. Boyce, “Emotional eating and its effect on eating behaviour after a natural disaster,” Appetite, vol. 58, no. 3, pp. 936–939, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Bobrovskaya, D. Beard, E. Bondarenko et al., “Does exposure to chronic stress influence blood pressure in rats?” Autonomic Neuroscience, vol. 177, pp. 217–223, 2013. View at Google Scholar
  35. B. M. Sweis, K. K. Veverka, E. S. Dhillon et al., “Individual differences in the effects of chronic stress on memory: behavioral and neurochemical correlates of resiliency,” Neuroscience, vol. 246, pp. 142–159, 2013. View at Google Scholar
  36. T.-L. Sterley, F. M. Howells, and V. A. Russell, “Effects of early life trauma are dependent on genetic predisposition: a rat study,” Behavioral and Brain Functions, vol. 7, article 11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. A. G. Bechtold, K. Vernon, T. Hines, and D. A. Scheuer, “Genetic predisposition to hypertension sensitizes borderline hypertensive rats to the hypertensive effects of prenatal glucocorticoid exposure,” Journal of Physiology, vol. 586, no. 2, pp. 673–684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Grissom and S. Bhatnagar, “Habituation to repeated stress: get used to it,” Neurobiology of Learning and Memory, vol. 92, no. 2, pp. 215–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. G. Tasker and J. P. Herman, “Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic-pituitary-adrenal axis,” Stress, vol. 14, no. 4, pp. 398–406, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Bernatova, Z. Csizmadiova, J. Kopincova, and A. Puzserova, “Vascular function and nitric oxide production in chronic social-stress-exposed rats with various family history of hypertension,” Journal of Physiology and Pharmacology, vol. 58, no. 3, pp. 487–501, 2007. View at Google Scholar · View at Scopus
  41. A. G. Bechtold, G. Patel, G. Hochhaus, and D. A. Scheuer, “Chronic blockade of hindbrain glucocorticoid receptors reduces blood pressure responses to novel stress and attenuates adaptation to repeated stress,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 296, no. 5, pp. R1445–R1454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. O. Šarenac, M. Lozić, S. Drakulić et al., “Autonomic mechanisms underpinning the stress response in borderline hypertensive rats,” Experimental Physiology, vol. 96, no. 6, pp. 574–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. F. Akana, C. S. Cascio, J. Shinsako, and M. F. Dallman, “Corticosterone: narrow range required for normal body and thymus weight and ACTH,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 249, no. 5, pp. R527–R532, 1985. View at Google Scholar · View at Scopus
  44. H. S. Nagaraja and P. S. Jeganathan, “Voluntary alcohol drinking & caloric intake in rats exposed to crowding stress,” Indian Journal of Medical Research, vol. 116, pp. 111–116, 2002. View at Google Scholar · View at Scopus
  45. K. J. Brown and N. E. Grunberg, “Effects of environmental conditions on food consumption in female and male rats,” Physiology and Behavior, vol. 60, no. 1, pp. 293–297, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. J. E. Goodwin and D. S. Geller, “Glucocorticoid-induced hypertension,” Pediatric Nephrology, vol. 27, no. 7, pp. 1059–1066, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. C. G. Schnackenberg, M. H. Costell, D. J. Krosky et al., “Chronic inhibition of 11β-hydroxysteroid dehydrogenase type 1 activity decreases hypertension, insulin resistance, and hypertriglyceridemia in metabolic syndrome,” BioMed Research International, vol. 2013, Article ID 427640, 10 pages, 2013. View at Publisher · View at Google Scholar
  48. A. J. M. Broadley, A. Korszun, E. Abdelaal et al., “Inhibition of cortisol production with metyrapone prevents mental stress-induced endothelial dysfunction and baroreflex impairment,” Journal of the American College of Cardiology, vol. 46, no. 2, pp. 344–350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. W. W. Simmons, D. Ungureanu-Longrois, G. K. Smith, T. W. Smith, and R. A. Kelly, “Glucocorticoids regulate inducible nitric oxide synthase by inhibiting tetrahydrobiopterin synthesis and L-arginine transport,” Journal of Biological Chemistry, vol. 271, no. 39, pp. 23928–23937, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. S. P. Duckles and V. M. Miller, “Hormonal modulation of endothelial NO production,” Pflügers Archiv, vol. 459, no. 6, pp. 841–851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. R. A. Sarabdjitsingh, M. Joëls, and E. R. de Kloet, “Glucocorticoid pulsatility and rapid corticosteroid actions in the central stress response,” Physiology and Behavior, vol. 106, no. 1, pp. 73–80, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Puzserova, J. Kopincova, P. Slezak et al., “Endothelial dysfunction in femoral artery of the hypertensive rats is nitric oxide independent,” Physiological Research, vol. 62, pp. 615–629, 2013. View at Google Scholar
  53. M. Devaki, R. Nirupama, and H. N. Yajurvedi, “Chronic stress-induced oxidative damage and hyperlipidemia are accompanied by atherosclerotic development in rats,” Stress, vol. 16, pp. 233–243, 2013. View at Google Scholar
  54. A. Zafir and N. Banu, “Induction of oxidative stress by restraint stress and corticosterone treatments in rats,” Indian Journal of Biochemistry and Biophysics, vol. 46, no. 1, pp. 53–58, 2009. View at Google Scholar · View at Scopus
  55. A. Friebe and D. Koesling, “Regulation of nitric oxide-sensitive guanylyl cyclase,” Circulation Research, vol. 93, no. 2, pp. 96–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Kobori, M. Nangaku, L. G. Navar, and A. Nishiyama, “The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease,” Pharmacological Reviews, vol. 59, no. 3, pp. 251–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. D. A. Scheuer and A. G. Bechtold, “Glucocorticoids potentiate central actions of angiotensin to increase arterial pressure,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 280, no. 6, pp. R1719–R1726, 2001. View at Google Scholar · View at Scopus
  58. I. Bernatova, “Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence?” BioMed Research International. In press.
  59. A. Jazayeri and W. J. Meyer III, “Glucocorticoid modulation of β-adrenergic receptors of cultured rat arterial smooth muscle cells,” Hypertension, vol. 12, no. 4, pp. 393–398, 1988. View at Google Scholar · View at Scopus
  60. G. S. Ceravolo, F. P. Filgueira, T. J. Costa et al., “Conjugated equine estrogen treatment corrected the exacerbated aorta oxidative stress in ovariectomized spontaneously hypertensive rats,” Steroids, vol. 78, pp. 341–346, 2013. View at Google Scholar
  61. L. Brandin, G. Bergström, K. Manhem, and H. Gustafsson, “Oestrogen modulates vascular adrenergic reactivity of the spontaneously hypertensive rat,” Journal of Hypertension, vol. 21, no. 9, pp. 1695–1702, 2003. View at Publisher · View at Google Scholar · View at Scopus