Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 437483, 7 pages
http://dx.doi.org/10.1155/2014/437483
Review Article

Microglia in Alzheimer’s Disease

1Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao 266071, China
2Department of Pathology, Qingdao Municipal Hospital, Qingdao 266071, China
3Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266003, China
4Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210029, China

Received 26 February 2014; Revised 28 May 2014; Accepted 3 June 2014; Published 14 August 2014

Academic Editor: Jin-Tai Yu

Copyright © 2014 Ying Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Kim, R. P. Mohney, B. Wilson, G. Jeohn, B. Liu, and J. Hong, “Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia,” Journal of Neuroscience, vol. 20, no. 16, pp. 6309–6316, 2000. View at Google Scholar · View at Scopus
  2. G. W. Kreutzberg, “Microglia: a sensor for pathological events in the CNS,” Trends in Neurosciences, vol. 19, no. 8, pp. 312–318, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Helmut, U. Hanisch, M. Noda, and A. Verkhratsky, “Physiology of microglia,” Physiological Reviews, vol. 91, no. 2, pp. 461–553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Gehrmann, R. B. Banati, C. Wiessner, K. A. Hossmann, and G. W. Kreutzberg, “Reactive microglia in cerebral ischaemia: an early mediator of tissue damage?” Neuropathology and Applied Neurobiology, vol. 21, no. 4, pp. 277–289, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. J. Lee, S. B. Han, S. Y. Nam, K. W. Oh, and J. T. Hong, “Inflammation and Alzheimer's disease,” Archives of Pharmacal Research, vol. 33, no. 10, pp. 1539–1556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Kurkowska-Jastrzȩbska, M. Babiuch, I. Joniec, A. Przybyłkowski, A. Członkowski, and A. Członkowska, “Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice,” International Immunopharmacology, vol. 2, no. 8, pp. 1213–1218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. J. Surh, J. K. Kundu, M. H. Li, H. K. Na, and Y. N. Cha, “Role of Nrf2-mediated heme oxygenase-1 upregulation in adaptive survival response to nitrosative stress,” Archives of Pharmacal Research, vol. 32, no. 8, pp. 1163–1176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Akiyama, S. Barger, S. Barnum et al., “Inflammation and Alzheimer's disease,” Neurobiology of Aging, vol. 21, no. 3, pp. 383–421, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kitazawa, T. R. Yamasaki, and F. M. LaFerla, “Microglia as a potential bridge between the amyloid β-peptide and tau,” Annals of the New York Academy of Sciences, vol. 1035, pp. 85–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. D. R. McDonald, K. R. Brunden, and G. E. Landreth, “Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia,” Journal of Neuroscience, vol. 17, no. 7, pp. 2284–2294, 1997. View at Google Scholar · View at Scopus
  11. M. L. Block and J. S. Hong, “Chronic microglial activation and progressive dopaminergic neurotoxicity,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1127–1132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Halle, V. Hornung, G. C. Petzold et al., “The NALP3 inflammasome is involved in the innate immune response to amyloid-β,” Nature Immunology, vol. 9, no. 8, pp. 857–865, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. L. F. Lue, Y. M. Kuo, T. Beach, and D. G. Walker, “Microglia activation and anti-inflammatory regulation in Alzheimer's disease,” Molecular Neurobiology, vol. 41, no. 2-3, pp. 115–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. E. Ringheim, A. M. Szczepanik, W. Petko, K. L. Burgher, S. Z. Zhu, and C. C. Chao, “Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex,” Molecular Brain Research, vol. 55, no. 1, pp. 35–44, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. C. S. Chiang, A. Stalder, A. Samimi, and I. L. Campbell, “Reactive gliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice,” Developmental Neuroscience, vol. 16, no. 3-4, pp. 212–221, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Y. Zou and F. T. Crews, “TNFα potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NFκB inhibition,” Brain Research, vol. 1034, no. 1-2, pp. 11–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. B. Choi, C. Khoo, J. K. Ryu, E. Van Breemen, S. U. Kim, and J. G. McLarnon, “Inhibition of lipopolysaccharide-induced cyclooxygenase-2, tumor necrosis factor-α and [Ca2+]i responses in human microglia by the peripheral benzodiazepine receptor ligand PK11195,” Journal of Neurochemistry, vol. 83, no. 3, pp. 546–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Acarin, B. Gonzalez, B. Castellano, and A. J. Castro, “Microglial response to N-methyl-D-aspartate-mediated excitotoxicity in the immature rat brain,” Journal of Comparative Neurology, vol. 367, no. 3, pp. 361–374, 1996. View at Google Scholar
  19. G. van Kooten and J. Banchereau, “CD40-CD40 ligand,” Journal of Leukocyte Biology, vol. 67, no. 1, pp. 2–17, 2000. View at Google Scholar · View at Scopus
  20. E. N. Benveniste, V. T. Nguyen, and D. R. Wesemann, “Molecular regulation of CD40 gene expression in macrophages and microglia,” Brain, Behavior, and Immunity, vol. 18, no. 1, pp. 7–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. D. M. Bonifati and U. Kishore, “Role of complement in neurodegeneration and neuroinflammation,” Molecular Immunology, vol. 44, no. 5, pp. 999–1010, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. W. M. Nauseef, “Nox enzymes in immune cells,” Seminars in Immunopathology, vol. 30, no. 3, pp. 195–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. L. Block, “NADPH oxidase as a therapeutic target in Alzheimer's disease,” BMC Neuroscience, vol. 9, supplement 2, article S8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Law, S. Gauthier, and R. Quirion, “Say NO to Alzheimer's disease: the putative links between nitric oxide and dementia of the Alzheimer's type,” Brain Research Reviews, vol. 35, no. 1, pp. 73–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. A. Girault and P. Greengard, “The neurobiology of dopamine signaling,” Archives of Neurology, vol. 61, no. 5, pp. 641–644, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Seeman, N. H. Bzowej, H. C. Guan et al., “Human brain D1 and D2 dopamine receptors in schizophrenia, Alzheimer's, Parkinson's, and Huntington's diseases,” Neuropsychopharmacology, vol. 1, no. 1, pp. 5–15, 1987. View at Publisher · View at Google Scholar · View at Scopus
  27. S. W. S. MacDonald, S. Karlsson, A. Rieckmann, L. Nyberg, and L. Bäckman, “Aging-related increases in behavioral variability: relations to losses of dopamine D1 receptors,” Journal of Neuroscience, vol. 32, no. 24, pp. 8186–8191, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Saijo, B. Winner, C. T. Carson et al., “A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death,” Cell, vol. 137, no. 1, pp. 47–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. S. Ousman, B. H. Tomooka, J. M. Van Noort et al., “Protective and therapeutic role for αB-crystallin in autoimmune demyelination,” Nature, vol. 448, no. 7152, pp. 474–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Li, K. Pisalyaput, M. Galvan, and A. J. Tenner, “Macrophage colony stimulatory factor and interferon-γ trigger distinct mechanisms for augmentation of β-amyloid-induced microglia-mediated neurotoxicity,” Journal of Neurochemistry, vol. 91, no. 3, pp. 623–633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Takeuchi, S. Jin, J. Wang et al., “Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner,” Journal of Biological Chemistry, vol. 281, no. 30, pp. 21362–21368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Bordji, J. Becerril-Ortega, O. Nicole, and A. Buisson, “Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-β production,” Journal of Neuroscience, vol. 30, no. 47, pp. 15927–15942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Wilkinson and J. El Khoury, “Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer's disease,” International Journal of Alzheimer's Disease, vol. 2012, Article ID 489456, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. J. El Khoury, M. Toft, S. E. Hickman et al., “Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease,” Nature Medicine, vol. 13, no. 4, pp. 432–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. L. Weiner and D. Frenkel, “Immunology and immunotherapy of Alzheimer's disease,” Nature Reviews Immunology, vol. 6, no. 5, pp. 404–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Jaworski, B. Lechat, D. Demedts et al., “Dendritic degeneration, neurovascular defects, and inflammation precede neuronal loss in a mouse model for tau-mediated neurodegeneration,” The American Journal of Pathology, vol. 179, no. 4, pp. 2001–2015, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. E. P. Azevedo, J. H. Ledo, G. Barbosa et al., “Activated microglia mediate synapse loss and short-term memory deficits in a mouse model of transthyretin-related oculoleptomeningeal amyloidosis,” Cell Death & Disease, vol. 4, article e789, 2013. View at Google Scholar
  38. L. Arnaud, N. K. Robakis, and M. E. Figueiredo-Pereira, “It may take inflammation, phosphorylation and ubiquitination to “tangle” in Alzheimer's disease,” Neurodegenerative Diseases, vol. 3, no. 6, pp. 313–319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Sy, M. Kitazawa, R. Medeiros et al., “Inflammation induced by infection potentiates tau pathological features in transgenic mice,” American Journal of Pathology, vol. 178, no. 6, pp. 2811–2822, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. R. D'Andrea, G. M. Cole, and M. D. Ard, “The microglial phagocytic role with specific plaque types in the Alzheimer disease brain,” Neurobiology of Aging, vol. 25, no. 5, pp. 675–683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Koenigsknecht and G. Landreth, “Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism,” Journal of Neuroscience, vol. 24, no. 44, pp. 9838–9846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Von Bernhardi and J. G. Nicholls, “Transformation of leech microglial cell morphology and properties following co-culture with injured central nervous system tissue,” Journal of Experimental Biology, vol. 202, no. 6, pp. 723–728, 1999. View at Google Scholar · View at Scopus
  43. E. Polazzi and A. Contestabile, “Reciprocal interactions between microglia and neurons: from survival to neuropathology,” Reviews in the Neurosciences, vol. 13, no. 3, pp. 221–242, 2002. View at Google Scholar · View at Scopus
  44. G. Raivich and R. Banati, “Brain microglia and blood-derived macrophages: Molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease,” Brain Research Reviews, vol. 46, no. 3, pp. 261–281, 2004. View at Publisher · View at Google Scholar · View at Scopus