Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 470983, 10 pages
http://dx.doi.org/10.1155/2014/470983
Review Article

Adult Stem Cell as New Advanced Therapy for Experimental Neuropathic Pain Treatment

1Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi Milano, 20129 Milano, Italy
2I.R.C.C.S. Istituto Ortopedico Galeazzi, 20161 Milano, Italy
3Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20129 Milano, Italy
4Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
5Istituto di Ricovero e Cura a Carattere Scientifico Opera di San Pio da Pietralcina, 71013 San Giovanni Rotondo, Italy

Received 12 June 2014; Accepted 23 July 2014; Published 13 August 2014

Academic Editor: Livio Luongo

Copyright © 2014 Silvia Franchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R.-D. Treede, T. S. Jensen, J. N. Campbell et al., “Neuropathic pain: redefinition and a grading system for clinical and research purposes,” Neurology, vol. 70, no. 18, pp. 1630–1635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Baron, “Mechanisms of disease: Neuropathic pain—a clinical perspective,” Nature Clinical Practice Neurology, vol. 2, no. 2, pp. 95–106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Baron, A. Binder, and G. Wasner, “Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment,” The Lancet Neurology, vol. 9, no. 8, pp. 807–819, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Sommer and M. Kress, “Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia,” Neuroscience Letters, vol. 361, no. 1–3, pp. 184–187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. J. Austin and G. Moalem-Taylor, “The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines,” Journal of Neuroimmunology, vol. 229, no. 1-2, pp. 26–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Calvo, J. M. Dawes, and D. L. Bennett, “The role of the immune system in the generation of neuropathic pain,” The Lancet Neurology, vol. 11, no. 7, pp. 629–642, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Sacerdote, S. Franchi, S. Moretti et al., “Cytokine modulation is necessary for efficacious treatment of experimental neuropathic pain,” Journal of Neuroimmune Pharmacology, vol. 8, no. 1, pp. 202–211, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. A. B. O'Connor and R. H. Dworkin, “Treatment of neuropathic pain: an overview of recent guidelines,” The American Journal of Medicine, vol. 122, no. 10, pp. S22–S32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Gilron, T. S. Jensen, and A. H. Dickenson, “Combination pharmacotherapy for management of chronic pain: from bench to bedside,” Lancet Neurology, vol. 12, pp. 1084–1095, 2013. View at Google Scholar
  10. S. Franchi, A. E. Valsecchi, E. Borsani et al., “Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy,” Pain, vol. 153, no. 4, pp. 850–861, 2012. View at Publisher · View at Google Scholar
  11. S. Wislet-Gendebien, F. Wautier, P. Leprince, and B. Rogister, “Astrocytic and neuronal fate of mesenchymal stem cells expressing nestin,” Brain Research Bulletin, vol. 68, no. 1-2, pp. 95–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Bossio, R. Mastrangelo, R. Morini et al., “A simple method to generate adipose stem cell-derived neurons for screening purposes,” Journal of Molecular Neuroscience, vol. 51, no. 2, pp. 274–281, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. P. J. Kingham, D. F. Kalbermatten, D. Mahay, S. J. Armstrong, M. Wiberg, and G. Terenghi, “Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro,” Experimental Neurology, vol. 207, no. 2, pp. 267–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. B. A. Reynolds and S. Weiss, “Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system,” Science, vol. 255, no. 5052, pp. 1707–1710, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Gritti, E. A. Parati, L. Cova et al., “Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor,” Journal of Neuroscience, vol. 16, no. 3, pp. 1091–1100, 1996. View at Google Scholar · View at Scopus
  16. A. L. Vescovi, A. Gritti, R. Galli, and E. A. Parati, “Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells,” Journal of Neurotrauma, vol. 16, no. 8, pp. 689–693, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. A. L. Vescovi, E. A. Parati, A. Gritti et al., “Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation,” Experimental Neurology, vol. 156, no. 1, pp. 71–83, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Gelati, D. Profico, M. Projetti-Pensi, G. Muzi, G. Sgaravizzi, and A. L. Vescovi, “Culturing and expansion of “clinical grade” precursors cells from the fetal human central nervous system,” Methods in Molecular Biology, vol. 1059, pp. 65–77, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Ferrari, E. Binda, L. De Filippis, and A. L. Vescovi, “Isolation of neural stem cells from neural tissues using the neurosphere technique,” Current Protocols in Stem Cell Biology, no. 15, article no. 2D.6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Butti, M. Cusimano, M. Bacigaluppi, and G. Martino, “Neurogenic and non-neurogenic functions of endogenous neural stem cells,” Frontiers in Neuroscience, vol. 8, article 92, 2014. View at Google Scholar
  21. Q. Xu, M. Zhang, J. Liu, and W. Li, “Intrathecal transplantation of neural stem cells appears to alleviate neuropathic pain in rats through release of GDNF,” Annals of Clinical and Laboratory Science, vol. 43, no. 2, pp. 154–162, 2013. View at Google Scholar · View at Scopus
  22. Y. Luo, Y. Zou, L. Yang et al., “Transplantation of NSCs with OECs alleviates neuropathic pain associated with NGF downregulation in rats following spinal cord injury,” Neuroscience Letters, vol. 549, pp. 103–108, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Karimi-Abdolrezaee, E. Eftekharpour, J. Wang, D. Schut, and M. G. Fehlings, “Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord,” Journal of Neuroscience, vol. 30, no. 5, pp. 1657–1676, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. P. Hofstetter, N. A. V. Holmström, J. A. Lilja et al., “Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome,” Nature Neuroscience, vol. 8, no. 3, pp. 346–353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Y. Macias, M. B. Syring, M. A. Pizzi, M. J. Crowe, A. R. Alexanian, and S. N. Kurpad, “Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury,” Experimental Neurology, vol. 201, no. 2, pp. 335–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. B. J. Cummings, N. Uchida, S. J. Tamaki et al., “Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 14069–14074, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Pluchino, A. Gritti, E. Blezer et al., “Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates,” Annals of Neurology, vol. 66, no. 3, pp. 343–354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Ferrari, C. Zalfa, L. R. Nodari et al., “Differential pathotropism of non-immortalized and immortalized human neural stem cell lines in a focal demyelination model,” Cellular and Molecular Life Sciences, vol. 69, no. 7, pp. 1193–1210, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Rota Nodari, D. Ferrari, F. Giani et al., “Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression,” PLoS ONE, vol. 5, no. 11, Article ID e14035, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Kögler, S. Sensken, J. A. Airey et al., “A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential,” Journal of Experimental Medicine, vol. 200, no. 2, pp. 123–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Aktas, A. Buchheiser, A. Houben et al., “Good manufacturing practice-grade production of unrestricted somatic stem cell from fresh cord blood,” Cytotherapy, vol. 12, no. 3, pp. 338–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Nazarov, J. W. Lee, E. Soupene et al., “Multipotent stromal stem cells from human placenta demonstrate high therapeutic potential,” Stem Cells Translational Medicine, vol. 1, no. 5, pp. 359–372, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, “Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13625–13630, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Lu, P. Hu, X. Su, C. Li, Y. Ma, and W. Guan, “Isolation and characterization of mesenchymal stem cells derived from fetal bovine liver,” Cell Tissue Bank, 2013. View at Google Scholar
  37. X. Gong, Z. Sun, D. Cui et al., “Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells,” Cell Biology International, vol. 38, no. 4, pp. 405–411, 2014. View at Publisher · View at Google Scholar
  38. A. C. W. Zannettino, S. Paton, A. Arthur et al., “Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo,” Journal of Cellular Physiology, vol. 214, no. 2, pp. 413–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. P. L. Musolino, M. F. Coronel, T. Hökfelt, and M. J. Villar, “Bone marrow stromal cells induce changes in pain behavior after sciatic nerve constriction,” Neuroscience Letters, vol. 418, no. 1, pp. 97–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. F. Coronel, P. L. Musolino, P. R. Brumovsky, T. Hökfelt, and M. J. Villar, “Bone marrow stromal cells attenuate injury-induced changes in galanin, NPY and NPY Y1-receptor expression after a sciatic nerve constriction,” Neuropeptides, vol. 43, no. 2, pp. 125–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Shibata, K. Naruse, H. Kamiya et al., “Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats,” Diabetes, vol. 57, no. 11, pp. 3099–3107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. B. J. Kim and H. K. Jin, “Bone marrow-derived mesenchymal stem cells improve the functioning of neurotrophic factors in a mouse model of diabetic neuropathy,” Laboratory Animal Research, vol. 27, no. 2, pp. 171–176, 2011. View at Google Scholar
  43. D. Siniscalco, C. Giordano, U. Galderisi et al., “Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice,” Cellular and Molecular Life Sciences, vol. 67, no. 4, pp. 655–669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Siniscalco, C. Giordano, U. Galderisi et al., “Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice,” Frontiers in Integrative Neuroscience, vol. 5, article 79, 2011. View at Publisher · View at Google Scholar
  45. R. S. Waterman, J. Morgenweck, B. D. Nossaman, A. E. Scandurro, S. A. Scandurro, and A. M. Betancourt, “Anti-inflammatory mesenchymal stem cells (MSC2) attenuate symptoms of painful diabetic peripheral neuropathy,” Stem Cells Translational Medicine, vol. 1, no. 7, pp. 557–565, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Sacerdote, S. Niada, S. Franchi et al., “Systemic administration of human adipose-derived stem cells reverts nociceptive hypersensitivity in an experimental model of neuropathy,” Stem Cells and Development, vol. 22, no. 8, pp. 1252–1263, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. L. De Girolamo, M. F. Sartori, E. Arrigoni et al., “Human adipose-derived stem cells as future tools in tissue regeneration: osteogenic differentiation and cell-scaffold interaction,” International Journal of Artificial Organs, vol. 31, no. 6, pp. 467–479, 2008. View at Google Scholar · View at Scopus
  48. L. D. Girolamo, S. Lopa, E. Arrigoni, M. F. Sartori, F. W. Baruffaldi Preis, and A. T. Brini, “Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation,” Cytotherapy, vol. 11, no. 6, pp. 793–803, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. In Choi, H. Tae Cho, M. Ki Jee, and S. Kyung Kang, “Core-shell nanoparticle controlled hATSCs neurogenesis for neuropathic pain therapy,” Biomaterials, vol. 34, no. 21, pp. 4956–4970, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Nagamura-Inoue and H. He, “Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility,” World Journal of Stem Cells, vol. 6, pp. 195–202, 2014. View at Google Scholar
  51. D. H. Roh, M. S. Seo, H. S. Choi et al., “Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats,” Cell Transplantation, vol. 22, pp. 1577–1590, 2013. View at Google Scholar
  52. C. C. Yang, Y. H. Shih, M. H. Ko, S. Y. Hsu, H. Cheng, and Y. S. Fu, “Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord,” PLoS ONE, vol. 3, no. 10, Article ID e3336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Klass, V. Gavrikov, D. Drury et al., “Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy,” Anesthesia and Analgesia, vol. 104, no. 4, pp. 944–948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Naruse, J. Sato, M. Funakubo et al., “Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, cold allodynia and nerve function in diabetic neuropathy,” PLoS ONE, vol. 6, no. 11, Article ID e27458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Martucci, A. E. Trovato, B. Costa et al., “The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1β, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice,” Pain, vol. 137, no. 1, pp. 81–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. A. E. Valsecchi, S. Franchi, A. E. Panerai, P. Sacerdote, A. E. Trovato, and M. Colleoni, “Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice: Anti-inflammatory and antioxidant activity,” Journal of Neurochemistry, vol. 107, no. 1, pp. 230–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. T. L. Bonfield and A. I. Caplan, “Adult mesenchymal stem cells: an innovative therapeutic for lung diseases,” Discovery Medicine, vol. 9, no. 47, pp. 337–345, 2010. View at Google Scholar · View at Scopus
  58. U. M. Fischer, M. T. Harting, F. Jimenez et al., “Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect,” Stem Cells and Development, vol. 18, no. 5, pp. 683–691, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Gao, J. E. Dennis, R. F. Muzic, M. Lundberg, and A. I. Caplan, “The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion,” Cells Tissues Organs, vol. 169, no. 1, pp. 12–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Schrepfer, T. Deuse, H. Reichenspurner, M. P. Fischbein, R. C. Robbins, and M. P. Pelletier, “Stem cell transplantation: the lung barrier,” Transplantation Proceedings, vol. 39, no. 2, pp. 573–576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. H. E. Daldrup-Link, M. Rudelius, S. Metz et al., “Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and flourescence microscopy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 9, pp. 1312–1321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Mazzini, A. Vercelli, I. Ferrero, M. Boido, R. Cantello, and F. Fagioli, “Transplantation of mesenchymal stem cells in ALS,” Progress in Brain Research, vol. 201, pp. 333–359, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. J. M. Hare, J. H. Traverse, T. D. Henry et al., “A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 54, no. 24, pp. 2277–2286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. J. C. Ra, I. S. Shin, S. H. Kim et al., “Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans,” Stem Cells and Development, vol. 20, no. 8, pp. 1297–1308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. F. Djouad, P. Plence, C. Bony et al., “Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals,” Blood, vol. 102, no. 10, pp. 3837–3844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. E. R. Vickers, E. Karsten, J. Flood, and R. Lilischkis, “A preliminary report on stem cell therapy for neuropathic pain in humans,” Journal of Pain Research, vol. 7, pp. 255–263, 2014. View at Publisher · View at Google Scholar
  67. D. Cantinieaux, R. Quertainmont, S. Blacher et al., “Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation,” PLoS ONE, vol. 8, no. 8, Article ID e69515, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Biancone, S. Bruno, M. C. Deregibus, C. Tetta, and G. Camussi, “Therapeutic potential of mesenchymal stem cell-derived microvesicles,” Nephrology Dialysis Transplantation, vol. 27, no. 8, pp. 3037–3042, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Fierabracci, A. Del Fattore, R. Luciano, M. Muraca, A. Teti, and M. Muraca, “Recent advances in mesenchymal stem cell immunomodulation. The role of microvesicles,” Cell Transplantation, 2013. View at Publisher · View at Google Scholar