Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 563131, 17 pages
http://dx.doi.org/10.1155/2014/563131
Review Article

Development of a Promising Fish Model (Oryzias melastigma) for Assessing Multiple Responses to Stresses in the Marine Environment

Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Number 1799 Jimei Street, Xiamen 361021, China

Received 5 November 2013; Revised 8 January 2014; Accepted 23 January 2014; Published 3 March 2014

Academic Editor: Zhi-Hua Li

Copyright © 2014 Sijun Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Chen, L. Li, C. K. C. Wong, and S. H. Cheng, “Rapid adaptation of molecular resources from zebrafish and medaka to develop an estuarine/marine model,” Comparative Biochemistry and Physiology C, vol. 149, no. 4, pp. 647–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. French, A. R. Jacobson, B. Kim, S. L. Isley, L. Penn, and P. C. Baveye, “Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles,” Environmental Science and Technology, vol. 43, no. 5, pp. 1354–1359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. C. You, C. Jia, and G. Pan, “Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface,” Environmental Pollution, vol. 158, no. 5, pp. 1343–1347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Jeon, K. Kannan, H. K. Lim, H. B. Moon, J. S. Ra, and S. D. Kim, “Bioaccumulation of perfluorochemicals in pacific oyster under different salinity gradients,” Environmental Science and Technology, vol. 44, no. 7, pp. 2695–2701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. W. K. Yang, C. K. Kang, C. H. Chang, A. D. Hsu, T. H. Lee, and P. P. Hwang, “Expression profiles of branchial FXYD proteins in the brackish medaka Oryzias dancena: a potential saltwater fish model for studies of osmoregulation,” PLoS ONE, vol. 8, no. 1, Article ID e55470, 2013. View at Google Scholar
  6. N. Y. Ho, V. W. T. Li, W. L. Poon, and S. H. Cheng, “Cloning and developmental expression of kinesin superfamily7 (kif7) in the brackish medaka (Oryzias melastigma), a close relative of the Japanese medaka (Oryzias latipes),” Marine Pollution Bulletin, vol. 57, no. 6–12, pp. 425–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C.-K. Kang, S.-C. Tsai, T.-H. Lee, and P.-P. Hwang, “Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater,” Comparative Biochemistry and Physiology A, vol. 151, no. 4, pp. 566–575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Shi, Y. Du, P. K. S. Lam, R. S. S. Wu, and B. Zhou, “Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS,” Toxicology and Applied Pharmacology, vol. 230, no. 1, pp. 23–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Hagenaars, L. Vergauwen, W. De Coen, and D. Knapen, “Structure-activity relationship assessment of four perfluorinated chemicals using a prolonged zebrafish early life stage test,” Chemosphere, vol. 82, no. 5, pp. 764–772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Wu, Q. Huang, C. Fang, T. Ye, L. Qiu, and S. Dong, “PFOS induced precocious hatching of Oryzias melastigma—from molecular level to individual level,” Chemosphere, vol. 87, no. 7, pp. 703–708, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Inoue and Y. Takei, “Diverse adaptability in Oryzias species to high environmental salinity,” Zoological Science, vol. 19, no. 7, pp. 727–734, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. W. P. Yip, Relating Estradiol and Telomeres to Longevity in Marine Medaka Oryzias melastigma, City University of Hong Kong, 2011.
  13. D. W. T. Au, “15th international symposium ontoxicity assessment,” Environmental Science and Pollution Research, vol. 19, pp. 2463–2464, 2012. View at Google Scholar
  14. M. Kinoshita, K. Murata, K. Naruse, and M. Tanaka, Medaka: Biology, Management, and Experimental Protocols, Wiley-Blackwell, 2009.
  15. X. Chen, L. Li, J. Cheng et al., “Molecular staging of marine medaka: a model organism for marine ecotoxicity study,” Marine Pollution Bulletin, vol. 63, no. 5–12, pp. 309–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Y. C. Kong, J. P. Giesy, R. S. S. Wu et al., “Development of a marine fish model for studying in vivo molecular responses in ecotoxicology,” Aquatic Toxicology, vol. 86, no. 2, pp. 131–141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. D. E. Hinton, R. C. Hardman, S. W. Kullman et al., “Aquatic animal models of human disease: selected papers and recommendations from the 4th Conference,” Comparative Biochemistry and Physiology C, vol. 149, no. 2, pp. 121–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Lee, S. H. Jeon, J. G. Na, and K. Park, “Sequence analysis of choriogenin H gene of medaka (Oryzias latipes) and mRNA expression,” Environmental Toxicology and Chemistry, vol. 21, no. 8, pp. 1709–1714, 2002. View at Google Scholar · View at Scopus
  19. A. Kanamori, K. Naruse, H. Mitani, A. Shima, and H. Hori, “Genomic organization of ZP domain containing egg envelope genes in medaka (Oryzias latipes),” Gene, vol. 305, no. 1, pp. 35–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Y. Lee, D. S. Kim, and Y. K. Nam, “Gene structure and estrogenresponsive mRNA expression of a novel choriogenin H isoform from a marine medaka (Oryzias dancena),” Fisheries & Aquatic Sciences, vol. 15, 2012. View at Google Scholar
  21. D. S. Hwang, B. M. Kim, D. W. T. Au, and J. S. Lee, “Complete mitochondrial genome of the marine medaka Oryzias melastigma (Beloniformes, Adrianichthyidae),” Mitochondrial DNA, vol. 23, no. 4, pp. 308–309, 2012. View at Google Scholar
  22. R. M. K. Yu, E. X. H. Chen, R. Y. C. Kong, P. K. S. Ng, H. O. L. Mok, and D. W. T. Au, “Hypoxia induces telomerase reverse transcriptase (TERT) gene expression in non-tumor fish tissues in vivo: the marine medaka (Oryzias melastigma) model,” BMC Molecular Biology, vol. 7, article no. 27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Huang, C. Fang, X. Wu, J. Fan, and S. Dong, “Perfluorooctane sulfonate impairs the cardiac development of a marine medaka (Oryzias melastigma),” Aquatic Toxicology, vol. 105, no. 1-2, pp. 71–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. M. L. Wong, R. M. K. Yu, P. K. S. Ng, S. H. W. Law, A. K. C. Tsang, and R. Y. C. Kong, “Characterization of a hypoxia-responsive leptin receptor (omLepRL) cDNA from the marine medaka (Oryzias melastigma),” Marine Pollution Bulletin, vol. 54, no. 6, pp. 797–803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. S. Rhee, B. M. Kim, B. S. Choi et al., “Whole spectrum of cytochrome P450 genes and molecular responses to water-accommodated fractions exposure in the marine Medaka,” Environmental Science & Technology, vol. 47, no. 9, pp. 4804–4812, 2013. View at Google Scholar
  26. C. Fang, Q. Huang, T. Ye et al., “Embryonic exposure to PFOS induces immunosuppression in the fish larvae of marine Medaka,” Ecotoxicology and Environmental Safety, vol. 92, pp. 104–111, 2013. View at Google Scholar
  27. Q. Huang, S. Dong, C. Fang, X. Wu, T. Ye, and Y. Lin, “Deep sequencing-based transcriptome profiling analysis of Oryzias melastigma exposed to PFOS,” Aquatic Toxicology, vol. 120, pp. 54–58, 2012. View at Google Scholar
  28. C. Fang, X. Wu, Q. Huang et al., “PFOS elicits transcriptional responses of the ER, AHR and PPAR pathways in Oryzias melastigma in a stage-specific manner,” Aquatic Toxicology, vol. 106-107, pp. 9–19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. R. R. Ye, E. N. Y. Lei, M. H. W. Lam et al., “Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47,” Environmental Science and Pollution Research, vol. 19, no. 7, pp. 2477–2487, 2011. View at Google Scholar
  30. J. Bo, J. P. Giesy, R. Ye, K.-J. Wang, J.-S. Lee, and D. W. T. Au, “Identification of differentially expressed genes and quantitative expression of complement genes in the liver of marine medaka Oryzias melastigma challenged with Vibrio parahaemolyticus,” Comparative Biochemistry and Physiology D, vol. 7, no. 2, pp. 191–200, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. Huang, C. Fang, Y. Chen et al., “Embryonic exposure to low concentration of bisphenol A affects the development of Oryzias melastigma larvae,” Environmental Science and Pollution Research, vol. 19, pp. 2506–2514, 2012. View at Google Scholar
  32. C.-K. Kang, H.-J. Tsai, C.-C. Liu, T.-H. Lee, and P.-P. Hwang, “Salinity-dependent expression of a Na+, K+, 2Cl- cotransporter in gills of the brackish medaka Oryzias dancena: a molecular correlate for hyposmoregulatory endurance,” Comparative Biochemistry and Physiology A, vol. 157, no. 1, pp. 7–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. R. O. Kim, B. M. Kim, D. S. Hwang et al., “Evaluation of biomarker potential of cytochrome P450 1A (CYP1A) gene in the marine medaka, Oryzias melastigma exposed to water-accommodated fractions (WAFs) of Iranian crude oil,” Comparative Biochemistry and Physiology C, vol. 157, pp. 172–182, 2013. View at Google Scholar
  34. X. Chen, V. W. T. Li, R. M. K. Yu, and S. H. Cheng, “Choriogenin mRNA as a sensitive molecular biomarker for estrogenic chemicals in developing brackish medaka (Oryzias melastigma),” Ecotoxicology and Environmental Safety, vol. 71, no. 1, pp. 200–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Yao, F. zhijun, Z. Jinshu et al., “Design of marine medaka (Oryzias melastigma) functional specific cDNA microarray and its ecotoxicological application,” Journal of Oceanography in Taiwan Strait, vol. 29, no. 3, pp. 359–366.
  36. L. Tian, M. Wang, X. Li et al., “Proteomic modification in gills and brains of medaka fish (Oryzias melastigma) after exposure to a sodium channel activator neurotoxin, brevetoxin-1,” Aquatic Toxicology, vol. 104, no. 3-4, pp. 211–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Wang, Y. Wang, J. Wang, L. Lin, H. Hong, and D. Wang, “Proteome profiles in medaka (Oryzias melastigma) liver and brain experimentally exposed to acute inorganic mercury,” Aquatic Toxicology, vol. 103, no. 3-4, pp. 129–139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Wang, Y. Wang, L. Zhang, J. Wang, H. Hong, and D. Wang, “Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma),” Aquatic Toxicology, vol. 130, pp. 123–131, 2013. View at Google Scholar
  39. H.-Q. Gu and Q.-Q. Chen, “Persistent toxic substances in offshore zone of China: a review,” Acta Ecologica Sinica, vol. 28, no. 12, pp. 6243–6251, 2008. View at Google Scholar · View at Scopus
  40. S. W. Wong, P. T. Leung, A. Djurišić, and K. M. Y. Leung, “Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility,” Analytical and Bioanalytical Chemistry, vol. 396, no. 2, pp. 609–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Taguchi, A. Seko, K. Kitajima et al., “Structural studies of a novel type of tetraantennary sialoglycan unit in a carbohydrate-rich glycopeptide isolated from the fertilized eggs of Indian Medaka fish, Oryzias melastigma,” The Journal of Biological Chemistry, vol. 268, no. 4, pp. 2353–2362, 1993. View at Google Scholar · View at Scopus
  42. J. P. van de Merwe, A. K. Y. Chan, E. N. Y. Lei, M. S. Yau, M. H. W. Lam, and R. S. S. Wu, “Bioaccumulation and maternal transfer of PBDE 47 in the marine medaka (Oryzias melastigma) following dietary exposure,” Aquatic Toxicology, vol. 103, no. 3-4, pp. 199–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Mu, X. Wang, F. Jin, J. Wang, and H. Hong, “The role of cytochrome P4501A activity inhibition in three-to five-ringed polycyclic aromatic hydrocarbons embryotoxicity of marine medaka (Oryzias melastigma),” Marine Pollution Bulletin, vol. 64, pp. 1445–1451, 2012. View at Google Scholar
  44. L. Xiao-long, W. Xin-hong, Z. Yan-yan, H. Hua-sheng, M. Jing-li, and F. Chao, “Quantification of PAHs pollution in marine environment by measurements of EROD activity and Caspase-3/7 activity in marine madaka (Oryzias melastigma) embryos,” in Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE '11), chn, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Tangtian, L. Bo, L. Wenhua, P. K. S. Shin, and R. S. S. Wu, “Estrogenic potential of benzotriazole on marine medaka (Oryzias melastigma),” Ecotoxicology and Environmental Safety, vol. 80, pp. 327–332, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. K. W. Kwok, K. M. Leung, E. Flahaut, J. Cheng, and S. H. Cheng, “Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods,” Nanomedicine, vol. 5, no. 6, pp. 951–961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Mu, Y. Wang, X. Wang, and J. Wang, “Toxic effects of cadmium, mercury, chromium and lead on the early life stage of marine Medaka (Oryzias melastigma),” Asian Journal of Ecotoxicology, vol. 6, no. 4, pp. 352–360, 2011. View at Google Scholar
  48. J. Bo, L. Cai, J.-H. Xu, K.-J. Wang, and D. W. T. Au, “The marine medaka Oryzias melastigma—a potential marine fish model for innate immune study,” Marine Pollution Bulletin, vol. 63, no. 5–12, pp. 267–276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Shen, J. Xu, T. Y. Tsang, and D. W. T. Au, “Toxicity comparison between Chattonella marina and Karenia brevis using marine medaka (Oryzias melastigma): evidence against the suspected ichthyotoxins of Chattonella marina,” Chemosphere, vol. 80, no. 5, pp. 585–591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Shen, J. Xu, A. K. Y. Chan, and D. W. T. Au, “Susceptibility of fish to Chattonella marina is determined by its tolerance to hypoxia,” Marine Pollution Bulletin, vol. 63, no. 5–12, pp. 189–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J. W. Martin, S. A. Mabury, K. R. Solomon, and D. C. G. Muir, “Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss),” Environmental Toxicology and Chemistry, vol. 22, no. 1, pp. 196–204, 2003. View at Google Scholar · View at Scopus
  52. J. W. Martin, S. A. Mabury, K. R. Solomon, and D. C. G. Muir, “Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss),” Environmental Toxicology and Chemistry, vol. 22, no. 1, pp. 189–195, 2003. View at Google Scholar · View at Scopus
  53. G. T. Ankley, D. W. Kuehl, M. D. Kahl, K. M. Jensen, B. C. Butterworth, and J. W. Nichols, “Partial life-cycle toxicity and bioconcentration modeling of perfluorooctanesulfonate in the northern leopard frog (Rana pipiens),” Environmental Toxicology and Chemistry, vol. 23, no. 11, pp. 2745–2755, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Wang, J. Wang, J. Mu, Z. Wang, Z. Yao, and Z. Lin, “Aquatic predicted no-effect concentration for three polycyclic aromatic hydrocarbons and probabilistic ecological risk assessment in Liaodong Bay of the Bohai Sea, China,” Environmental Science and Pollution Research, vol. 21, no. 1, pp. 148–158, 2014. View at Google Scholar
  55. A. C. Tse, K. Y. Lau, W. Ge, and R. S. Wu, “A rapid screening test for endocrine disrupting chemicals using primary cell culture of the marine medaka,” Aquatic Toxicology, vol. 144-145, pp. 50–58, 2013. View at Google Scholar
  56. T. M. Jones, V. S. Fang, R. L. Landau, and R. Rosenfield, “Direct inhibition of Leydig cell function by estradiol,” Journal of Clinical Endocrinology and Metabolism, vol. 47, no. 6, pp. 1368–1373, 1978. View at Google Scholar · View at Scopus
  57. P. P. de Waal, M. C. Leal, Á. García-López et al., “Oestrogen-induced androgen insufficiency results in a reduction of proliferation and differentiation of spermatogonia in the zebrafish testis,” Journal of Endocrinology, vol. 202, no. 2, pp. 287–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Jhansilakshmibai and R. Madhavi, “Euclinostomum heterostomum (Rudolphi, 1809) (Trematoda): life-cycle, growth and development of the metacercaria and adult,” Systematic Parasitology, vol. 38, no. 1, pp. 51–64, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Yusof, A. Ismail, T. Koito, M. Kinoshita, and K. Inoue, “Occurrence of two closely related ricefishes, Javanese medaka (Oryzias javanicus) and Indian medaka (O. dancena) at sites with different salinity in Peninsular Malaysia,” Environmental Biology of Fishes, vol. 93, no. 1, pp. 43–49, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. R. M. K. Yu, E. X. H. Chen, R. Y. C. Kong, P. K. S. Ng, H. O. L. Mok, and D. W. T. Au, “Hypoxia induces telomerase reverse transcriptase (TERT) gene expression in non-tumor fish tissues in vivo: the marine medaka (Oryzias melastigma) model,” BMC Molecular Biology, vol. 7, article 27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Liu, Y. Du, and B. Zhou, “Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes,” Aquatic Toxicology, vol. 85, no. 4, pp. 267–277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Du, X. Shi, C. Liu, K. Yu, and B. Zhou, “Chronic effects of water-borne PFOS exposure on growth, survival and hepatotoxicity in zebrafish: a partial life-cycle test,” Chemosphere, vol. 74, no. 5, pp. 723–729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. M. E. Austin, B. S. Kasturi, M. Barber, K. Kannan, P. S. MohanKumar, and S. M. J. MohanKumar, “Neuroendocrine effects of perflurooactane sulfonate in rats,” Environmental Health Perspectives, vol. 111, no. 12, pp. 1485–1489, 2003. View at Google Scholar · View at Scopus
  64. C. C. Edsall, “Acute toxicities to larval rainbow trout of representative compounds detected in great lakes fish,” Bulletin of Environmental Contamination and Toxicology, vol. 46, no. 2, pp. 173–178, 1991. View at Google Scholar · View at Scopus
  65. A. S. Sobrino-Figueroa, C. Cáceres-Martínez, A. V. Botello, and G. Nunez-Nogueira, “Effect of cadmium, chromium, lead and metal mixtures on survival and growth of juveniles of the scallop Argopecten ventricosus (Sowerby II, 1842),” Journal of Environmental Science and Health A, vol. 42, no. 10, pp. 1443–1447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. V. J. Vedamanikam and N. A. M. Shazilli, “The effect of multi-generational exposure to metals and resultant change in median lethal toxicity tests values over subsequent generations,” Bulletin of Environmental Contamination and Toxicology, vol. 80, no. 1, pp. 63–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Milani, T. B. Reynoldson, U. Borgmann, and J. Kolasa, “The relative sensitivity of four benthic invertebrates to metals in spiked-sediment exposures and application to contaminated field sediment,” Environmental Toxicology and Chemistry, vol. 22, no. 4, pp. 845–854, 2003. View at Google Scholar
  68. X. Liu, Y. Xu, and G. Lan, “Toxic effects of several heavy metals on the embryos, larvae of Cynoglossus semilaevis Gunther,” Marine Fisheries Research, vol. 27, no. 2, pp. 33–42, 2006. View at Google Scholar
  69. M. Shuhaimi-Othman, Y. Nadzifah, N. Umirah, and A. Ahmad, “Toxicity of metals to tadpoles of the common Sunda toad, Duttaphrynus melanostictus,” Toxicological & Environmental Chemistry, vol. 94, no. 2, pp. 364–376, 2012. View at Google Scholar
  70. L. Bat, A. Gündogdu, M. Sezgin, M. Çulha, and G. Cönlugür, “Acute toxicity of zinc, copper and lead to three species of marine organisms from the Sinop Peninsula, Black Sea,” Turkish Journal of Biology, vol. 23, pp. 537–544, 1999. View at Google Scholar
  71. E. Barbieri, “Effects of zinc and cadmium on oxygen consumption and ammonium excretion in pink shrimp (Farfantepenaeus paulensis, Pérez-Farfante, 1967, Crustacea),” Ecotoxicology, vol. 18, no. 3, pp. 312–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Sulaiman and W. Noor, “Aquatic toxicity testing of copper, cadmium, and ammonia on seabass, lates calcarifer. in asean marine environmental management quality criteria and monitoring for aquatic life and human health protection,” in Proceeding of the ASEAN-Canada Technical Conference on Marine Science, Penang, Malaysia, 1997.
  73. E. Jackim, J. M. Hamlin, and S. Sonis, “Effects of metal poisoning on five liver enzymes in the killifish (Fundulus heteroclitus),” Journal of the Fisheries Board of Canada, vol. 27, no. 2, pp. 383–390, 1970. View at Google Scholar
  74. H.-C. Lin and W. A. Dunson, “The effect of salinity on the acute toxicity of cadmium to the tropical, estuarine, hermaphroditic fish, Rivulus marmoratus: a comparison of Cd, Cu, and Zn tolerance with Fundulus heteroclitus,” Archives of Environmental Contamination and Toxicology, vol. 25, no. 1, pp. 41–47, 1993. View at Google Scholar · View at Scopus
  75. G. Denton and C. Burdon-Jones, “Environmental effects on toxicity of heavy metals to two species of tropical marine fish from Northern Australia,” Chemistry and Ecology, vol. 2, no. 3, pp. 233–249, 1986. View at Google Scholar
  76. R. Chumnantana, J. Sanguansin, and J. Koyama, “Study on acute toxicity test of cadmium to red snapper juvenile, Lutjanus argentimaculatus (Forskal),” Thai Marine Fisheries Research Bulletin, vol. 3, pp. 55–59, 1992. View at Google Scholar
  77. K. M. El-Moselhy, L. I. Mohamedein, and M. A. Abdelmoneim, “Acute Toxicity of copper and mercury to different life stages of the Nile Tilapia (Oreochromis niloticus),” African J. Biol. Sci., vol. 7, no. 2, pp. 13–21, 2011. View at Google Scholar
  78. J. L. Mu, Y. Wang, and X. H. Wang, “Toxic effects of cadmium, mercury, chromium and lead on the early life stage of marine medaka (Oryzias melastigma),” Asian Journal of Ecotoxicology, vol. 6, no. 4, pp. 352–360, 2011. View at Google Scholar
  79. L. Cao, W. Huang, X. Shan, Z. Xiao, Q. Wang, and S. Dou, “Cadmium toxicity to embryonic-larval development and survival in red sea bream Pagrus major,” Ecotoxicology and Environmental Safety, vol. 72, no. 7, pp. 1966–1974, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Bo, Z. Weiyun, C. Mingda, Z. Zhixia, and S. Yongquan, “The toxicities of Cu, Zn, Cd on larval red sea bream and larval black sea bream,” Journal of Xiamen University: Natural Science, vol. 33, supplement 1, pp. 28–30, 1994 (Chinese). View at Google Scholar
  81. R. V. Paila and P. R. Yallapragada, “Bioaccumulation and toxic effects of copper on growth and oxygen consumption by the postlarvae of Penaeus indicus,” Chemistry and Ecology, vol. 26, no. 3, pp. 209–221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Chinni, R. N. Khan, and P. R. Yallapragada, “Acute toxicity of lead on tolerance, oxygen consumption, ammonia-N excretion, and metal accumulation in Penaeus indicus postlarvae,” Ecotoxicology and Environmental Safety, vol. 51, no. 2, pp. 79–84, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Hariharan, C. Suresh Kumar, S. Laxmi Priya et al., “Acute and chronic toxic effect of lead (Pb) and zinc (Zn) on biomarker response in post larvae of Penaeus monodon (Fabricus, 1798),” Toxicological & Environmental Chemistry, vol. 94, no. 8, pp. 1571–1582, 2012. View at Google Scholar
  84. O. Fafioye and B. Ogunsanwo, “The comparative toxicities of cadmium, copper and lead to Macrobrachium rosenbergii and Penaeus monodon postlarvae,” African Journal of Agricultural Research, vol. 2, no. 1, pp. 31–35, 2007. View at Google Scholar
  85. S. Gao and D. Zou, “Acute toxicity of Cd, Zn and Mn to larvae of Penaeus penicillatus,” Marine Science Bulletin, vol. 14, no. 6, pp. 83–86, 1995. View at Google Scholar
  86. Z. Yan, Toxic Effect of Several Heavy Metals on Guppy, Shandong National University, 2010.
  87. E. Garnacho, L. S. Peck, and P. A. Tyler, “Variations between winter and summer in the toxicity of copper to a population of the mysid Praunus flexuosus,” Marine Biology, vol. 137, no. 4, pp. 631–636, 2000. View at Google Scholar · View at Scopus
  88. F. A. Green Jr., J. W. Anderson, and S. R. Petrocelli, “Effect of mercury on the survival, respiration, and growth of postlarval white shrimp, Penaeus setiferus,” Marine Biology, vol. 37, no. 1, pp. 75–81, 1976. View at Google Scholar · View at Scopus
  89. M. Shuhaimi-Othman, N. Yakub, N.-A. Ramle, and A. Abas, “Toxicity of metals to a freshwater ostracod: stenocypris major,” Journal of Toxicology, vol. 2011, Article ID 136104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. W. Hongjun, L. Sixin, Z. Lianfeng, Z. Jinxiu, and L. Youguang, “The effect of exposure to five kinds of heavy metals on respiratory movement of Zebra Fish (Brachydanio rerio),” Journal of Agro-Environment Science, vol. 29, no. 9, pp. 1675–1680, 2010. View at Google Scholar
  91. V. W. W. Bao, K. M. Y. Leung, J.-W. Qiu, and M. H. W. Lam, “Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species,” Marine Pollution Bulletin, vol. 62, no. 5, pp. 1147–1151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. T. C. King-Heiden, V. Mehta, K. M. Xiong et al., “Reproductive and developmental toxicity of dioxin in fish,” Molecular and Cellular Endocrinology, vol. 354, no. 1-2, pp. 121–138, 2012. View at Publisher · View at Google Scholar · View at Scopus