Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 579632, 9 pages
http://dx.doi.org/10.1155/2014/579632
Research Article

Recombinant Keratinocyte Growth Factor 1 in Tobacco Potentially Promotes Wound Healing in Diabetic Rats

1College of Life Science, Anhui Agricultural University, Hefei 230036, China
2Department of Biology, Guangdong Medical College, Dongguang 523808, China
3Department of General Surgery, Cixi People’s Hospital, Ningbo 315300, China
4Traumatic Medicine Center, Lishui People’s Hospital, Lishui 315300, China

Received 13 December 2013; Accepted 20 February 2014; Published 24 March 2014

Academic Editor: Jian Xiao

Copyright © 2014 Zhi-Guo Feng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. M. Takase, T. Itoh, S. Ino et al., “FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration,” Genes & Development, vol. 27, no. 2, pp. 169–181, 2013. View at Google Scholar
  2. I. Kakizaki, N. Itano, K. Kimata et al., “Up-regulation of hyaluronan synthase genes in cultured human epidermal keratinocytes by UVB irradiation,” Archives of Biochemistry and Biophysics, vol. 471, no. 1, pp. 85–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. A. Tandara, O. Kloeters, J. E. Mogford, and T. A. Mustoe, “Hydrated keratinocytes reduce collagen synthesis by fibroblasts via paracrine mechanisms,” Wound Repair and Regeneration, vol. 15, no. 4, pp. 497–504, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Braun, C. Mauch, P. Boukamp, and S. Werner, “Novel roles of NM23 proteins in skin homeostasis, repair and disease,” Oncogene, vol. 26, no. 4, pp. 532–542, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. P. Marti, P. Mohebi, L. Liu, J. Wang, T. Miyashita, and J. W. Harmon, “KGF-1 for wound healing in animal models,” Methods in Molecular Biology, vol. 423, pp. 383–391, 2008. View at Google Scholar · View at Scopus
  6. S. M. Tsai and W. P. Wang, “Expression and function of fibroblast growth factor (FGF)7 during liver regeneration,” Cellular Physiology and Biochemistry, vol. 27, no. 6, pp. 641–652, 2011. View at Google Scholar
  7. B. Berent-Maoz, E. Montecino-Rodriguez, R. A. Signer, and K. Dorshkind, “Fibroblast growth factor-7 partially reverses murine thymocyte progenitor aging by repression of Ink4a,” Blood, vol. 119, no. 24, pp. 5715–5721, 2012. View at Google Scholar
  8. P. L. Santa Maria, S. L. Redmond, M. D. Atlas, and R. Ghassemifar, “Keratinocyte growth factor 1, fibroblast growth factor 2 and 10 in the healing tympanic membrane following perforation in rats,” Journal of Molecular Histology, vol. 42, no. 1, pp. 47–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Raffa, L. Leone, C. Scrofani, S. Monini, M. R. Torrisi, and M. Barbara, “Cholesteatoma-associated fibroblasts modulate epithelial growth and differentiation through KGF/FGF7 secretion,” Histochemistry and Cell Biology, vol. 138, no. 2, pp. 251–269, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Aguilar, C. J. Scotton, K. McNulty et al., “Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis,” PLoS ONE, vol. 4, no. 11, Article ID e8013, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Mann and B. Meng, “The triple gene block movement proteins of a grape virus in the genus Foveavirus confer limited cell-to-cell spread of a mutant Potato virus X,” Virus Genes, vol. 47, no. 1, pp. 93–104, 2013. View at Publisher · View at Google Scholar
  12. N. N. Kakareka, Iu. G. Volkov, Z. N. Kozlovskaia, and T. I. Pleshakova, “Production of immunodiagnosticum preparations based on plant virus strains,” Mikrobiolohichnyĭ Zhurnal, vol. 75, no. 1, pp. 69–78, 2013. View at Google Scholar
  13. M. R. Park and K. H. Kim, “Molecular characterization of the interaction between the N-terminal region of Potato virus X, (PVX) coat protein (CP) and Nicotiana benthamiana PVX CP-interacting protein, NbPCIP1,” Virus Genes, vol. 46, no. 3, pp. 517–523, 2013. View at Google Scholar
  14. K. L. Hefferon, “Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins,” Virology, vol. 433, no. 1, pp. 1–6, 2012. View at Google Scholar
  15. L. G. Tyulkina, E. V. Skurat, O. Y. Frolova, T. V. Komarova, E. M. Karger, and I. G. Atabekov, “New viral vector for superproduction of epitopes of vaccine proteins in plants,” Acta Naturae, vol. 3, no. 4, pp. 73–82, 2011. View at Google Scholar
  16. B. Wagner, H. Fuchs, F. Adhami, Y. Ma, O. Scheiner, and H. Breiteneder, “Plant virus expression systems for transient production of recombinant allergens in Nicotiana benthamiana,” Methods, vol. 32, no. 3, pp. 227–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Lacorte, S. G. Ribeiro, D. Lohuis, R. Goldbach, and M. Prins, “Potato virus X and Tobacco mosaic virus-based vectors compatible with the Gateway cloning system,” Journal of Virological Methods, vol. 164, no. 1-2, pp. 7–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Peng, B. Chen, H.-K. Kao, G. Murphy, D. P. Orgill, and L. Guo, “Lack of FGF-7 further delays cutaneous wound healing in diabetic mice,” Plastic and Reconstructive Surgery, vol. 128, no. 6, pp. 673e–684e, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Marti, M. Ferguson, J. Wang et al., “Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model,” Gene Therapy, vol. 11, no. 24, pp. 1780–1785, 2004. View at Publisher · View at Google Scholar · View at Scopus